跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳均
Chun Chen
論文名稱: 耦合水熱電模型優化降雨入滲模擬
Using Coupled Hydro-thermal-geoelectrical Model to Optimize Rainfall Infiltration Simulation
指導教授: 陳建志
李明旭
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 181
中文關鍵詞: 耦合地下水力與熱傳模式地電阻影像法降雨入滲模擬參數估計
外文關鍵詞: Coupled hydrological-thermal model, Electrical resistivity tomography, rainfall infiltration simulation, parameter estimation
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要研究土壤降雨入滲動態過程中的水、熱及地球物理等不同物理機制的交互作用,並估計農田土壤降雨入滲過程中的相關參數。土壤含水量和溫度等物理量,對於降雨入滲的相關機制,具有相當重要的角色。本研究結合耦合水力與熱傳數值模式以及地電阻資料,建立自動化耦合參數估計流程,在參數最佳化過程中,利用研究場址現地的土壤含水量、溫度和視阻抗等觀測數據,校驗模型結果並由模擬與觀測量兩者建立目標函式來進行參數最佳化控制,以進行地下水文、熱傳和地球物理參數的估計。結果顯示,此方法可以很好地估計出水、熱參數,並且也能夠量化參數估計結果的不確定性,模擬的土壤水分和溫度與實際測量數據非常接近,顯示本研究所估計的水文參數具有非常高可信度,可以同時解釋多種物理獨立觀測量,但視電阻率數據的擬合效果不如前兩者。造成電阻率擬合度相對不佳的原因可能來自於測量原理及空間範圍的差異、最佳化過程中使用的一維層狀模型以及水-電關係式參數簡化對於描述真實自然界物理機制的誤差等,最終能夠透過觀測資料校驗模型,並且利用最佳參數進行降雨入滲過程中的水流、熱傳及地球物理等不同物理量的動態行為模擬。本研究除了提供了地下環境中不同物理機制耦合的交互作用理論架構,也強調了此方法需要進一步研究以提高參數估計的準確性和對複雜物理交互作用的理解,更幫助我們更進一步了解降雨入滲作用對於土壤的多重物理機制。


    This study primarily investigates the interactive effects of different physical mechanisms, such as water, heat, and geophysics, during the dynamic process of soil rainfall infiltration, and estimates relevant parameters during the infiltration process in agricultural soil. This study built a parameter optimization scheme to estimate the subsurface hydrological, thermal, and geophysical parameters by using soil moisture, temperature, and apparent resistivity observation data. In this optimization procedure, the real measured datasets collected in the study site were used to calibrate the modeling results and to constrain the optimization process by the objective function. The results showed that the controlling parameters can be well estimated and the uncertainty was also realized after the inversion. The simulated soil moisture and temperature were very close to the real measured datasets. However, the apparent resistivity data fitting is not as good as the previous two. Reasons for poor fitting of electrical data may be due to measurement limitations, the use of a one-dimensional model, and an incomplete description of the petrophysical relationship. The dynamic behaviors of various physical quantities such as water flow, heat transfer, and geophysics during the rainfall infiltration process can be finally simulated using optimal parameters. This research provides valuable insights into the coupling of different physical processes in the underground environment and highlights the need for further studies to improve the accuracy of parameter estimation and the understanding of the complex interactions between different physical quantities.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 一、 緒論 1 1-1 研究動機與目的 1 1-2 研究區域與場址概述 3 二、 文獻回顧 13 2-1 降雨入滲模式 13 2-2 地電阻影像法應用於水文現象監測 14 2-3 水文模式與地電阻監測整合應用 17 三、 研究原理與方法 22 3-1 耦合地下水力與熱傳模式 22 3-1-1 變飽和地下水流控制方程式 22 3-1-2 地下環境熱傳控制方程式 27 3-2 水文資料的量測與分析 30 3-2-1 儀器介紹 30 3-2-2 土壤保水曲線 31 3-2-3 相對水力傳導係數 33 3-2-4 土壤溫度熱傳分析 34 3-3 地球物理資料的量測與分析 39 3-3-1 地電阻影像法原理概述 39 3-3-2 多波道高密度地電阻監測系統 42 3-3-3 地電阻資料處理 43 3-3-4 地電阻模擬套件 44 3-4 耦合水文熱傳及地球物理參數最佳化 54 3-4-1 參數逆推問題與正則化 55 3-4-2 參數估計軟體 58 3-4-3 最佳化演算法 59 3-4-4 參數估計不確定性分析 63 四、 研究結果 68 4-1 水文站觀測資料分析 68 4-1-1 土壤水文特性分析 68 4-1-2 土壤熱傳特性分析 69 4-2 水文數值模式應用 76 4-2-1 水文模式網格建立 77 4-2-2 模擬參數與條件 77 4-3 耦合參數最佳化 83 4-3-1 最佳化參數及輸入觀測資料 83 4-3-2 水流參數最佳化 89 4-3-3 水流及熱傳參數最佳化 92 4-3-4 水流及地球物理參數最佳化 95 4-3-5 水流、熱傳及地球物理參數最佳化 98 五、 討論 104 5-1 水文資料分析結果討論 104 5-2 耦合參數估計及不確定性 105 5-3 耦合參數最佳化之資料擬合度 110 5-4 最佳校驗模擬結果 113 六、 結論與建議 116 參考文獻 118 附錄A 研究中使用之各種水文及地球物理資料 129

    Al-Hashimi, O., Hashim, K., Loffill, E., Marolt Čebašek, T., Nakouti, I., Faisal, A. A. H., & Al-Ansari, N. (2021). A Comprehensive Review for Groundwater Contamination and Remediation: Occurrence, Migration and Adsorption Modelling. Molecules, 26(19). doi:10.3390/molecules26195913
    Alamry, A. S., van der Meijde, M., Noomen, M., Addink, E. A., van Benthem, R., & de Jong, S. M. (2017). Spatial and temporal monitoring of soil moisture using surface electrical resistivity tomography in Mediterranean soils. CATENA, 157, 388-396. doi:https://doi.org/10.1016/j.catena.2017.06.001
    Archie, G. E. (1942). The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME, 146(01), 54-62. doi:10.2118/942054-g
    Bai, L., Huo, Z., Zeng, Z., Liu, H., Tan, J., & Wang, T. (2021). Groundwater flow monitoring using time-lapse electrical resistivity and Self Potential data. Journal of Applied Geophysics, 193, 104411. doi:https://doi.org/10.1016/j.jappgeo.2021.104411
    Beff, L., Günther, T., Vandoorne, B., Couvreur, V., & Javaux, M. (2013). Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography. Hydrol. Earth Syst. Sci., 17(2), 595-609. doi:10.5194/hess-17-595-2013
    Bièvre, G., Jongmans, D., Winiarski, T., & Zumbo, V. (2012). Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrological Processes, 26(14), 2128-2142. doi:10.1002/hyp.7986
    Blome, M., Maurer, H. R., & Schmidt, K. (2009). Advances in three-dimensional geoelectric forward solver techniques. Geophysical Journal International, 176(3), 740-752. doi:10.1111/j.1365-246X.2008.04006.x
    Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., & Hasenauer, S. (2010). Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol. Earth Syst. Sci., 14(10), 1881-1893. doi:10.5194/hess-14-1881-2010
    Brooks, R. H., & Corey, A. T. (1964). Hydraulic Properties of Porous Media and Their Relation to Drainage Design. Transactions of the ASAE, 7(1), 26-0028. doi:https://doi.org/10.13031/2013.40684
    Brunet, P., Clément, R., & Bouvier, C. (2010). Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT) – A case study in the Cevennes area, France. Journal of Hydrology, 380(1), 146-153. doi:https://doi.org/10.1016/j.jhydrol.2009.10.032
    Buckingham, E. (1907). Studies on the movement of soil moisture.
    Campbell, G. S. (1974). A Simple Method For Determing Unsaturated Conductivity From Moisture Retention Data. Soil Science, 117(6), 311-314. Retrieved from https://journals.lww.com/soilsci/Fulltext/1974/06000/A_SIMPLE_METHOD_FOR_DETERMINING_UNSATURATED.1.aspx
    Campbell, G. S., & Norman, J. M. (1998). An introduction to environmental biophysics (Second edition. ed.). New York: Springer.
    Cao, W., Sheng, Y., Wu, J., & Peng, E. (2021). Differential response to rainfall of soil moisture infiltration in permafrost and seasonally frozen ground in Kangqiong small basin on the Qinghai-Tibet Plateau. Hydrological Sciences Journal, 66(3), 525-543. doi:10.1080/02626667.2021.1883619
    Caputo, M. C., De Carlo, L., Masciale, R., & Masciopinto, C. (2017). Long-term Pumping Test and Ert to Visualize Hydrogeologic Barriers in Heterogeneous and Karstic Coastal Aquifers. Journal of Geology & Geophysics, 6. doi:10.4172/2381-8719.1000304
    Carrière, S., Chalikakis, K., Danquigny, C., Clément, R., & Emblanch, C. (2015). Feasibility and Limits of Electrical Resistivity Tomography to Monitor Water Infiltration Through Karst Medium During a Rainy Event. In (Vol. 1, pp. 45-55).
    Carrière, S. D., Ruffault, J., Pimont, F., Doussan, C., Simioni, G., Chalikakis, K., . . . Martin-StPaul, N. K. (2020). Impact of local soil and subsoil conditions on inter-individual variations in tree responses to drought: insights from Electrical Resistivity Tomography. Science of The Total Environment, 698, 134247. doi:https://doi.org/10.1016/j.scitotenv.2019.134247
    Celano, G., Palese, A. M., Ciucci, A., Martorella, E., Vignozzi, N., & Xiloyannis, C. (2011). Evaluation of soil water content in tilled and cover-cropped olive orchards by the geoelectrical technique. Geoderma, 163(3), 163-170. doi:https://doi.org/10.1016/j.geoderma.2011.03.012
    Chambers, J. E., Meldrum, P. I., Wilkinson, P. B., Ward, W., Jackson, C., Matthews, B., . . . Gunn, D. (2015). Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated time-lapse electrical resistivity tomography and distribution guided clustering. Engineering Geology, 193, 412-420. doi:https://doi.org/10.1016/j.enggeo.2015.05.015
    Chang, P.-Y., Chang, L.-C., Hsu, S.-Y., Tsai, J.-P., & Chen, W.-F. (2017). Estimating the hydrogeological parameters of an unconfined aquifer with the time-lapse resistivity-imaging method during pumping tests: Case studies at the Pengtsuo and Dajou sites, Taiwan. Journal of Applied Geophysics, 144, 134-143. doi:https://doi.org/10.1016/j.jappgeo.2017.06.014
    Chen, K.-H., Hwang, C., Chang, L.-C., & Tanaka, Y. (2021). Infiltration coefficient, percolation rate and depth-dependent specific yields estimated from 1.5 years of absolute gravity observations near a recharge lake in Pingtung, Taiwan. Journal of Hydrology, 603, 127089. doi:https://doi.org/10.1016/j.jhydrol.2021.127089
    Clément, R., Descloitres, M., Günther, T., Ribolzi, O., & Legchenko, A. (2009). Influence of shallow infiltration on time-lapse ERT: Experience of advanced interpretation. Comptes Rendus Geoscience, 341(10), 886-898. doi:https://doi.org/10.1016/j.crte.2009.07.005
    Clapp, R. B., & Hornberger, G. M. (1978). Empirical equations for some soil hydraulic properties. Water Resources Research, 14(4), 601-604. doi:10.1029/WR014i004p00601
    Coscia, I., Linde, N., Greenhalgh, S., Günther, T., & Green, A. (2012). A filtering method to correct time-lapse 3D ERT data and improve imaging of natural aquifer dynamics. Journal of Applied Geophysics, 80, 12-24. doi:https://doi.org/10.1016/j.jappgeo.2011.12.015
    Dafflon, B., Oktem, R., Peterson, J., Ulrich, C., Tran, A. P., Romanovsky, V., & Hubbard, S. S. (2017). Coincident aboveground and belowground autonomous monitoring to quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra. Journal of Geophysical Research: Biogeosciences, 122(6), 1321-1342. doi:https://doi.org/10.1002/2016JG003724
    Darcy, H. (1856). Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau : Ouvrage terminé par un appendice relatif aux fournitures d'eau de plusieurs villes, au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tôle et de bitume: Victor Dalmont, éditeur.
    de Almeida, W. S., Panachuki, E., de Oliveira, P. T. S., da Silva Menezes, R., Sobrinho, T. A., & de Carvalho, D. F. (2018). Effect of soil tillage and vegetal cover on soil water infiltration. Soil and Tillage Research, 175, 130-138. doi:https://doi.org/10.1016/j.still.2017.07.009
    de Lima, O. A. L., & Sri, N. (2000). Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. Journal of Hydrology, 235(1), 12-26. doi:https://doi.org/10.1016/S0022-1694(00)00256-0
    Descloitres, M., Ribolzi, O., Troquer, Y., & Thiébaux, J. (2008). Study of water tension differences in heterogeneous sandy soils using surface ERT. Journal of Applied Geophysics - J APPL GEOPHYS, 64, 83-98. doi:10.1016/j.jappgeo.2007.12.007
    Descloitres, M., Ruiz, L., Sekhar, M., Legchenko, A., Braun, J.-J., Mohan Kumar, M. S., & Subramanian, S. (2008). Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding. Hydrological Processes, 22(3), 384-394. doi:https://doi.org/10.1002/hyp.6608
    Dey, A., & Morrison, H. F. (1979). Resistivity Modelling For Arbitrarily Shaped Two-Dimensional Structures. Geophysical Prospecting, 27(1), 106-136. doi:https://doi.org/10.1111/j.1365-2478.1979.tb00961.x
    Dietrich, S., Carrera, J., Weinzettel, P., & Sierra, L. (2018). Estimation of Specific Yield and its Variability by Electrical Resistivity Tomography. Water Resources Research, 54(11), 8653-8673. doi:10.1029/2018wr022938
    Dingman, S. L. (2015). Physical hydrology (3rd ed. ed.). Long Grove, Illinois: Waveland Press, Inc.
    Doherty, J. (2015). Calibration and Uncertainty Analysis for Complex Environmental Models. Brisbane, Australia: Watermark Numerical Computing.
    Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (2nd ed. ed.). New York: Wiley.
    Fan, J., Scheuermann, A., Guyot, A., Baumgartl, T., & Lockington, D. A. (2015). Quantifying spatiotemporal dynamics of root-zone soil water in a mixed forest on subtropical coastal sand dune using surface ERT and spatial TDR. Journal of Hydrology, 523, 475-488. doi:10.1016/j.jhydrol.2015.01.064
    Fowler, D. E., & Moysey, S. M. J. (2011). Estimation of aquifer transport parameters from resistivity monitoring data within a coupled inversion framework. Journal of Hydrology, 409(1), 545-554. doi:https://doi.org/10.1016/j.jhydrol.2011.08.063
    Friedel, S. (2003). Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach. Geophysical Journal International - GEOPHYS J INT, 153, 305-316. doi:10.1046/j.1365-246X.2003.01890.x
    Friedel, S., Thielen, A., & Springman, S. M. (2006). Investigation of a slope endangered by rainfall-induced landslides using 3D resistivity tomography and geotechnical testing. Journal of Applied Geophysics, 60(2), 100-114. doi:10.1016/j.jappgeo.2006.01.001
    Fullhart, A. T., Kelleners, T. J., Chandler, D. G., McNamara, J. P., & Seyfried, M. S. (2019). Bulk density optimization to determine subsurface hydraulic properties in Rocky Mountain catchments using the GEOtop model. Hydrological Processes, 33(17), 2323-2336. doi:https://doi.org/10.1002/hyp.13471
    Günther, T., Rücker, C., & Spitzer, K. (2006). Three-dimensional modelling and inversion of dc resistivity data incorporating topography — II. Inversion. Geophysical Journal International, 166(2), 506-517. doi:10.1111/j.1365-246X.2006.03011.x
    Garré, S., Javaux, M., Vanderborght, J., Pagès, L., & Vereecken, H. (2011). Three-Dimensional Electrical Resistivity Tomography to Monitor Root Zone Water Dynamics. Vadose Zone Journal, 10(1), 412-424. doi:10.2136/vzj2010.0079
    Glover, P., Hole, M., & Pous, J. (2000). A modifed Archie's law for two conducting phases. Earth and Planetary Science Letters - EARTH PLANET SCI LETT, 180, 369-383. doi:10.1016/S0012-821X(00)00168-0
    Glover, P. W. J. (2016). Archie's law – a reappraisal. Solid Earth, 7(4), 1157-1169. doi:10.5194/se-7-1157-2016
    Glover, P. W. J. (2017). A new theoretical interpretation of Archie's saturation exponent. Solid Earth, 8(4), 805-816. doi:10.5194/se-8-805-2017
    Hübner, R., Heller, K., Günther, T., & Kleber, A. (2015). Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements. Hydrol. Earth Syst. Sci., 19(1), 225-240. doi:10.5194/hess-19-225-2015
    Haaken, K., Furman, A., Weisbrod, N., & Kemna, A. (2016). Time-Lapse Electrical Imaging of Water Infiltration in the Context of Soil Aquifer Treatment. Vadose Zone Journal, 15(11), 12. doi:10.2136/vzj2016.04.0028
    Hayashi, M. (2004). Temperature-Electrical Conductivity Relation of Water for Environmental Monitoring and Geophysical Data Inversion. Environmental Monitoring and Assessment, 96(1), 119-128. doi:10.1023/B:EMAS.0000031719.83065.68
    Hayley, K., Bentley, L. R., Gharibi, M., & Nightingale, M. (2007). Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring. Geophysical Research Letters, 34(18). doi:https://doi.org/10.1029/2007GL031124
    Heber Green, W., & Ampt, G. A. (1911). Studies on Soil Phyics. The Journal of Agricultural Science, 4(1), 1-24. doi:10.1017/S0021859600001441
    Hermans, T., Nguyen, F., & Robert, T. (2014). Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems. Energies, 7, 5083-5118. doi:10.3390/en7085083
    Hermans, T., Vandenbohede, A., Lebbe, L., & Nguyen, F. (2012). A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography. GEOPHYSICS, 77. doi:10.1190/geo2011-0199.1
    Hillel, D. (1982). Introduction to soil physics. New York: Academic Press.
    Hinnell, A. C., Ferré, T. P. A., Vrugt, J. A., Huisman, J. A., Moysey, S., Rings, J., & Kowalsky, M. B. (2010). Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion. Water Resources Research, 46(4). doi:https://doi.org/10.1029/2008WR007060
    Horton, R. E. (1933). The Rôle of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union, 14(1), 446-460. doi:https://doi.org/10.1029/TR014i001p00446
    Horton, R. E. (1939). Analysis of runoff-plat experiments with varying infiltration-capacity. Eos, Transactions American Geophysical Union, 20(4), 693-711. doi:https://doi.org/10.1029/TR020i004p00693
    Huisman, J. A., Rings, J., Vrugt, J. A., Sorg, J., & Vereecken, H. (2010). Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion. Journal of Hydrology, 380(1), 62-73. doi:https://doi.org/10.1016/j.jhydrol.2009.10.023
    J. Rawls, W., L. Brakensiek, D., & Soni, B. (1983). Agricultural Management Effects on Soil Water Processes Part I: Soil Water Retention and Green and Ampt Infiltration Parameters. Transactions of the ASAE, 26(6), 1747-1752. doi:https://doi.org/10.13031/2013.33837
    Jafarov, E. E., Harp, D. R., Coon, E. T., Dafflon, B., Tran, A. P., Atchley, A. L., . . . Wilson, C. J. (2020). Estimation of subsurface porosities and thermal conductivities of polygonal tundra by coupled inversion of electrical resistivity, temperature, and moisture content data. The Cryosphere, 14(1), 77-91. doi:10.5194/tc-14-77-2020
    Jodry, C., Palma Lopes, S., Fargier, Y., Sanchez, M., & Côte, P. (2019). 2D-ERT monitoring of soil moisture seasonal behaviour in a river levee: A case study. Journal of Applied Geophysics, 167, 140-151. doi:https://doi.org/10.1016/j.jappgeo.2019.05.008
    Johnson, T. C., Versteeg, R. J., Huang, H., & Routh, P. S. (2009). Data-domain correlation approach for joint hydrogeologic inversion of time-lapse hydrogeologic and geophysical data. GEOPHYSICS, 74(6), F127-F140. doi:10.1190/1.3237087
    Kearey, P., Brooks, M., & Hill, I. (2001). An introduction to geophysical exploration (3rd ed. / Philip Kearey, Michael Brooks, Ian Hill. ed.). Malden, MA: Blackwell Science.
    Kowalsky, M. B., Gasperikova, E., Finsterle, S., Watson, D., Baker, G., & Hubbard, S. S. (2011). Coupled modeling of hydrogeochemical and electrical resistivity data for exploring the impact of recharge on subsurface contamination. Water Resources Research, 47(2). doi:https://doi.org/10.1029/2009WR008947
    Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D., & Wealthall, G. P. (2009). Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). 341(10-11), 868-885. doi:10.1016/j.crte.2009.07.010
    Lapenna, V., & Perrone, A. (2022). Time-Lapse Electrical Resistivity Tomography (TL-ERT) for Landslide Monitoring: Recent Advances and Future Directions. Applied Sciences, 12(3), 1425. Retrieved from https://www.mdpi.com/2076-3417/12/3/1425
    Levenberg, K. (1944). A Method for the Solution of Certain Problems in Least Squares. Quarterly of Applied Mathematics, 2(2), 164-168. Retrieved from http://www.jstor.org/stable/43633451
    Linde, N., Binley, A., Tryggvason, A., Pedersen, L. B., & Revil, A. (2006). Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resources Research, 42(12). doi:https://doi.org/10.1029/2006WR005131
    Lu, D., Wang, H., Huang, D., Li, D., & Sun, Y. (2020). Measurement and Estimation of Water Retention Curves Using Electrical Resistivity Data in Porous Media. Journal of Hydrologic Engineering, 25(6), 04020021. doi:doi:10.1061/(ASCE)HE.1943-5584.0001925
    Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441. Retrieved from http://www.jstor.org/stable/2098941
    Memari, S. S., & Clement, T. P. (2021). PySWR- A Python code for fitting soil water retention functions. Computers & Geosciences, 156, 104897. doi:https://doi.org/10.1016/j.cageo.2021.104897
    Merz, B., & Bárdossy, A. (1998). Effects of spatial variability on the rainfall runoff process in a small loess catchment. Journal of Hydrology, 212-213, 304-317. doi:https://doi.org/10.1016/S0022-1694(98)00213-3
    Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., & Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5). doi:https://doi.org/10.1029/2002WR001581
    Michot, D., Thomas, Z., & Adam, I. (2016). Nonstationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: a case study. SOIL, 2(2), 241-255. doi:10.5194/soil-2-241-2016
    Miller, C. R., Routh, P. S., Brosten, T. R., & McNamara, J. P. (2008). Application of time-lapse ERT imaging to watershed characterization. GEOPHYSICS, 73(3), G7-G17. doi:10.1190/1.2907156
    Morbidelli, R., Corradini, C., Saltalippi, C., Flammini, A., Dari, J., & Govindaraju, R. S. (2018). Rainfall Infiltration Modeling: A Review. Water, 10(12), 1873. Retrieved from https://www.mdpi.com/2073-4441/10/12/1873
    Multiphysics, C. O. M. S. O. L. (1998). Introduction to COMSOL multiphysics. COMSOL Multiphysics, Burlington, MA, accessed Feb, 9, 2018.
    Nasta, P., Boaga, J., Deiana, R., Cassiani, G., & Romano, N. (2019). Comparing ERT- and scaling-based approaches to parameterize soil hydraulic properties for spatially distributed model applications. Advances in Water Resources, 126, 155-167. doi:10.1016/j.advwatres.2019.02.014
    Nielson, T., Bradford, J., Pierce, J., & Seyfried, M. (2021). Soil structure and soil moisture dynamics inferred from time-lapse electrical resistivity tomography. CATENA, 207, 105553. doi:https://doi.org/10.1016/j.catena.2021.105553
    Oware, E. K., Moysey, S. M. J., & Khan, T. (2013). Physically based regularization of hydrogeophysical inverse problems for improved imaging of process-driven systems. Water Resources Research, 49(10), 6238-6247. doi:https://doi.org/10.1002/wrcr.20462
    Perrens, S. J., & Watson, K. K. (1977). Numerical analysis of two-dimensional infiltration and redistribution. Water Resources Research, 13(4), 781-790. doi:https://doi.org/10.1029/WR013i004p00781
    Philip, J. R. (1957). The theory of infiltration: 1. The infiltration equation and its solution. Soil Science, 83(5), 345-358. Retrieved from https://journals.lww.com/soilsci/Fulltext/1957/05000/THE_THEORY_OF_INFILTRATION__1__THE_INFILTRATION.2.aspx
    Pleasants, M. S., Neves, F. d. A., Parsekian, A. D., Befus, K. M., & Kelleners, T. J. (2022). Hydrogeophysical Inversion of Time-Lapse ERT Data to Determine Hillslope Subsurface Hydraulic Properties. Water Resources Research, 58(4), e2021WR031073. doi:https://doi.org/10.1029/2021WR031073
    Pruess, K., Oldenburg, C. M., & Moridis, G. J. (1999). TOUGH2 User's Guide Version 2. Retrieved from United States: https://www.osti.gov/biblio/751729
    https://www.osti.gov/servlets/purl/751729
    Rücker, C. (2011). Advanced Electrical Resistivity Modelling and Inversion using Unstructured Discretization. (PhD). University of Leipzig, Leipzig, Retrieved from urn:nbn:de:bsz:15-qucosa-69066
    Rücker, C., Günther, T., & Spitzer, K. (2006). Three-dimensional modelling and inversion of dc resistivity data incorporating topography – I. Modelling. Geophysical Journal International, 166(2), 495-505. doi:https://doi.org/10.1111/j.1365-246X.2006.03010.x
    Rücker, C., Günther, T., & Wagner, F. M. (2017). pyGIMLi: An open-source library for modelling and inversion in geophysics. Computers & Geosciences, 109, 106-123. doi:https://doi.org/10.1016/j.cageo.2017.07.011
    Revil, A., & Glover, P. W. J. (1998). Nature of surface electrical conductivity in natural sands, sandstones, and clays. Geophysical Research Letters, 25(5), 691-694. doi:https://doi.org/10.1029/98GL00296
    Richards, L. A. (1931). Capillary Conduction of Liquids Through Porous Mediums. Physics, 1(5), 318-333. doi:10.1063/1.1745010
    Schwarz, H., & Bertermann, D. (2020). Mediate relation between electrical and thermal conductivity of soil. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6(3), 50. doi:10.1007/s40948-020-00173-x
    Simunek, J. J., Saito, H., Sakai, M., & Van Genuchten, M. (2008). The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media.
    Smyl, D., Rashetnia, R., Seppänen, A., & Pour-Ghaz, M. (2017). Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks? Cement and Concrete Research, 91, 61-72. doi:https://doi.org/10.1016/j.cemconres.2016.10.009
    Sorensen, D. C. (1982). Newton’s Method with a Model Trust Region Modification. SIAM Journal on Numerical Analysis, 19(2), 409-426. doi:10.1137/0719026
    Szalai, S., Szokoli, K., Prácser, E., Metwaly, M., Zubair, M., & Szarka, L. (2019). An alternative way in electrical resistivity prospection: the quasi-null arrays. Geophysical Journal International, 220(3), 1463-1480. doi:10.1093/gji/ggz518
    Thierfelder, C., & Wall, P. C. (2009). Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil and Tillage Research, 105(2), 217-227. doi:https://doi.org/10.1016/j.still.2009.07.007
    Tong, B., Gao, Z., Horton, R., Li, Y., & Wang, L. (2016). An Empirical Model for Estimating Soil Thermal Conductivity from Soil Water Content and Porosity. Journal of Hydrometeorology, 17(2), 601-613. doi:https://doi.org/10.1175/JHM-D-15-0119.1
    Tran, A. P., Dafflon, B., & Hubbard, S. (2016). iMatTOUGH: An open-source Matlab-based graphical user interface for pre- and post-processing of TOUGH2 and iTOUGH2 models. Computers & Geosciences, 89, 132-143. doi:https://doi.org/10.1016/j.cageo.2016.02.006
    Tran, A. P., Dafflon, B., & Hubbard, S. (2017). Coupled land surface–subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra. The Cryosphere, 11(5), 2089-2109. doi:10.5194/tc-11-2089-2017
    Tran, A. P., Dafflon, B., Hubbard, S., Kowalsky, M. B., Long, P., Tokunaga, T. K., & Williams, K. H. (2016). Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion. Hydrol. Earth Syst. Sci., 20(9), 3477-3491. doi:10.5194/hess-20-3477-2016
    Travelletti, J., Sailhac, P., Malet, J. P., Grandjean, G., & Ponton, J. (2012). Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography. Hydrological Processes, 26(14), 2106-2119. doi:10.1002/hyp.7983
    Tsai, W.-N., Chen, C.-C., Chiang, C.-W., Chen, P.-Y., Kuo, C.-Y., Wang, K.-L., . . . Chen, R.-F. (2021). Electrical Resistivity Tomography (ERT) Monitoring for Landslides: Case Study in the Lantai Area, Yilan Taiping Mountain, Northeast Taiwan. Frontiers in Earth Science, 9. doi:10.3389/feart.2021.737271
    Uhlemann, S. S., Sorensen, J. P. R., House, A. R., Wilkinson, P. B., Roberts, C., Gooddy, D. C., . . . Chambers, J. E. (2016). Integrated time-lapse geoelectrical imaging of wetland hydrological processes. Water Resources Research, 52(3), 1607-1625. doi:https://doi.org/10.1002/2015WR017932
    van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. doi:https://doi.org/10.2136/sssaj1980.03615995004400050002x
    Wagner, F. M., Mollaret, C., Günther, T., Kemna, A., & Hauck, C. (2019). Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. Geophysical Journal International, 219(3), 1866-1875. doi:10.1093/gji/ggz402
    Watlet, A., Kaufmann, O., Triantafyllou, A., Poulain, A., Chambers, J. E., Meldrum, P. I., . . . Van Camp, M. (2018). Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring. Hydrol. Earth Syst. Sci., 22(2), 1563-1592. doi:10.5194/hess-22-1563-2018
    Waxman, M. H., & Smits, L. J. M. (1968). Electrical Conductivities in Oil-Bearing Shaly Sands. Society of Petroleum Engineers Journal, 8(02), 107-122. doi:10.2118/1863-a
    White, J. T. (2018). A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions. Environmental Modelling & Software, 109, 191-201. doi:https://doi.org/10.1016/j.envsoft.2018.06.009
    White, J. T., Fienen, M. N., & Doherty, J. E. (2016). A python framework for environmental model uncertainty analysis. Environmental Modelling & Software, 85, 217-228. doi:https://doi.org/10.1016/j.envsoft.2016.08.017
    White, J. T., Hunt, R. J., Fienen, M. N., & Doherty, J. E. (2020). Approaches to highly parameterized inversion: PEST++ Version 5, a software suite for parameter estimation, uncertainty analysis, management optimization and sensitivity analysis (7-C26). Retrieved from Reston, VA: http://pubs.er.usgs.gov/publication/tm7C26
    Wu, J., & Nofziger, D. L. (1999). Incorporating Temperature Effects on Pesticide Degradation into a Management Model. Journal of Environmental Quality, 28(1), 92-100. doi:https://doi.org/10.2134/jeq1999.00472425002800010010x
    Yeh, G.-T. (1987). FEMWATER: A finite element model of WATER flow through saturated-unsaturated porous media: First revision.
    Yeh, G.-T., Jardine, P. M., Burgos, W. D., Fang, Y., Li, M.-H., & Siegel, M. D. (2004). HYDROGEOCHEM 4.0: A coupled model of fluid flow, thermal transport, and hydrogeochemical transport through saturated-unsaturated media – version 4.0. Oak Ridge, TN.: Oak Ridge National Laboratory.
    Yeh, G.-T., & Luxmoore, R. J. (1983). Modeling moisture and thermal transport in unsaturated porous media. Journal of Hydrology, 64(1), 299-309. doi:https://doi.org/10.1016/0022-1694(83)90074-4
    Zhang, G., Zhang, G.-B., Chen, C.-c., Chang, P.-Y., Wang, T.-P., Yen, H.-Y., . . . Jia, Z.-y. (2016). Imaging Rainfall Infiltration Processes with the Time-Lapse Electrical Resistivity Imaging Method. Pure and Applied Geophysics, 173(6), 2227-2239. doi:10.1007/s00024-016-1251-x
    Zhao, K., Xu, Q., Liu, F., Xiu, D., & Ren, X. (2020). Field monitoring of preferential infiltration in loess using time-lapse electrical resistivity tomography. Journal of Hydrology, 591, 125278. doi:https://doi.org/10.1016/j.jhydrol.2020.125278
    Zieher, T., Markart, G., Ottowitz, D., Römer, A., Rutzinger, M., Meißl, G., & Geitner, C. (2016). Water content dynamics at plot scale - comparison of time-lapse electrical resistivity tomography monitoring and pore pressure modelling. Journal of Hydrology, 544, 195-209. doi:10.1016/j.jhydrol.2016.11.019
    Zienkiewicz, O. C., Taylor, R. L., & Too, J. M. (1971). Reduced integration technique in general analysis of plates and shells. International Journal for Numerical Methods in Engineering, 3(2), 275-290. doi:https://doi.org/10.1002/nme.1620030211
    王子賓. (2016). 交互應用各式地球物理探勘方法於土壤及地下水污染場址之研究. (博士). 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/rfww5p
    交通部中央氣象局. (2022). 氣候資料年報: 交通部中央氣象局.
    交通部中央氣象局, & 行政院農業委員會. (2023). 農業氣象觀測網監測系統. Retrieved from https://agr.cwb.gov.tw/NAGR/history/station_hour
    朱佾蓁, & 陳建志. (2020). 利用地電阻影像法計算水文地質參數 以屏東平原為例. 撰者, 桃園市中壢區.
    行政院農業委員會農業試驗所 (Cartographer). (2008). 全台平地詳測土壤圖
    行政院農業委員會農業試驗所. (2016). 農業試驗所土壤資料供應查詢平台. Retrieved from https://tssurgo.tari.gov.tw/Tssurgo/Map
    何信昌, & 陳勉銘 (Cartographer). (2000). 臺中[地質圖幅及說明書1/50,000]
    吳正宗. (2001). 鹽害土壤的診斷與改良. 興大農業(36), 19-23. Retrieved from http://hdl.handle.net/11455/84145
    國立中興大學土壤科學系. (1976). 台中縣南投縣土壤調查報告. Retrieved from 台中市南區:
    盛丰, 文鼎, 熊祎玮, & 王康. (2021). 基于电阻率层析成像技术的农田土壤优先流原位动态监测. 农业工程学报, 37(8), 117-124. doi:10.11975/j.issn.1002-6819.2021.08.013
    經濟部中央地質調查所. (2015). 臺中盆地地下水補注地質敏感區劃定計畫書(G0005). (10404606410). 新北市中和區: 經濟部
    經濟部中央地質調查所. (2023). 工程地質探勘資料庫. Retrieved from https://geotech.moeacgs.gov.tw/imoeagis/Home/Map
    經濟部水利署. (2022). 水文資訊網萬豐地下水觀測井. Retrieved from https://gweb.wra.gov.tw/HydroInfo/StDataInfo/StDataInfo?GW&061812M2
    蔡武男, & 陳建志. (2021). 電阻率變化與降雨間關係及其對於山崩的影響:以宜蘭太平山蘭台地區為例. (碩士). 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/d9299t

    QR CODE
    :::