跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾宏彬
Hung-pin Chung
論文名稱: 以單一非週期性晶疇極化反轉鈮酸鋰電光晶片達成可調變多波長之窄頻光參量產生/振盪器之研究
Electro-optic spectral narrowing and manipulation in a PPLN/APPLN optical parametric oscillator
指導教授: 陳彥宏
Yen-hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 中文
論文頁數: 78
中文關鍵詞: 多工窄頻極化反轉非週期性結構鈮酸鋰光參量產生/震盪器電光
外文關鍵詞: spectral narrowing and manipulation, Poling, APPLN, OPO, LiNbO3, Electro-optic
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前研究者利用鈮酸鋰晶體之電光調制機制,改變傳播光的偏振,配合設計滿足特定相位匹配條件的週期性結構,製作一電光偏振濾波器,並用以窄化並調制週期性結構光參量產生/振盪器之寬輸出訊號光波譜,而成功製作出可由外加電場調制其輸出波譜的光參量產生/振盪晶片(第一代)。雖然利用非週期性結構之電光偏振濾波器(第二代),可以簡化先前雙段週期性式電光偏振制濾波器,但其調制輸出波譜僅限於特定晶片,若要在單一晶片上輸出不同的調制波譜(例如:單波輸出、雙波輸出或三波輸出等)則需要使晶片系統穩定在特定的調制溫度及特定的調制電壓,而使得實際使用上相當困難。
    為了改善這個問題,本論文首先改良第二代晶片,利用串接的方式,將多段特定電光濾波器與週期性光參量振盪器結合,使之藉由不同電光濾波器的開/關,以達成在單一晶片上輸出不同調制波譜(方案一、方案二)。
    但由於此兩代晶片依舊分為電光調制段與光參量產生段,為了產生特定相位匹配條件,我們必頇要分段溫控,因此,各段的溫控條件,將會決定此光參量振盪晶片輸出訊號光波譜的品質。
    因此,在研究後期,我們利用非週期性結構能同時滿足多種相位匹配條件的特性,配合自我調制結構演算法,將電光調制過程與光參量產生過程,整合於單一非週期性晶疇反轉鈮酸鋰晶片中(方案三),此代晶片有著不頇分段溫控的優點,並由於電場施加在整體晶片上,使整體晶片都具有電光濾波的功能,而大幅減低了電光濾波時所需要的電壓。
    最後,我們利用改良之自我調制法,設計出以串接兩片第五代晶片的方式,在不需要分段溫控的條件下,利用分段電控的方式,達成單一晶片得以輸出不同的訊號波譜(方案四)。


    Using electro-optical (EO) PPLN/APLN polarization mode converter to narrow and modulate the OPO bandwidth has been published (1st generation, 2nd generation). Because the problems of segmented temperature and electric field control, it is hard to modulate when tuning the output spectrum with different conditions.
    To solve this problem, we first use two or three stages cascaded EO APPLN to tune the output spectrum by switching the voltage of the EO sections at a fixed system temperature (3rd generation, 4th generation).
    Next, we use the self-adjustment method to design a single APPLN to accomplish the simultaneously electro-optical polarization mode filtering and OPG/OPO (5th generation).Because all range of the chips have the function of electro-optical polarization mode filtering, it significantly reduce the modulation voltage of the electro-optical filtering.
    The final part of this thesis is to provide a solution of the problem of spectrum tuning by using cascaded two simultaneously EO polarization mode filter and OPG/OPO APPLN (6th generation). The chips of 6th generation are designed by an improved self-adjustment method to avoid the initial phase shift problems of signal resulted from segmented AOS structure design.

    中文摘要………………………………………………………………i 英文摘要………………………………………………………………ii 致謝……………………………………………………………………iii 目錄……………………………………………………………………iv 圖目錄…………………………………………………………………vi 表目錄…………………………………………………………………viii 第一章 緒論 1.1 發展簡史 ……………………………………………1 1.2 研究動機 ……………………………………………2 1.3 研究目的 ……………………………………………3 第二章 理論分析 2.1 電光效應 ……………………………………………5 2.2 索爾克式濾波器 ……………………………………9 2.3 光參量產生/振盪……………………………………12 2.4 準相位匹配 …………………………………………13 2.5 非週期性光學超晶格結構 …………………………15 2.6 耦合方程式 …………………………………………16 第三章 晶片設計 3.1 模擬退火法 …………………………………………20 3.2 自我調制法 …………………………………………23 3.3 龍格-庫塔法…………………………………………28 3.4電光偏振濾波器之模擬 ……………………………31 3.5非週期電光偏振濾波/單段週期光參量振盪晶片 …36 3.6單一非週期同時電光偏振濾波與光參量振盪晶片…39 第四章 設計結果與分析 4.1 <方案一>晶片設計結果 ……………………………44 4.2 <方案二>晶片設計結果 ……………………………47 4.3 <方案三>晶片設計結果 ……………………………49 4.4 <方案四>晶片設計結果 ……………………………51 4.5 結果分析 ……………………………………………52 第五章 結論與未來展望 5.1 結論 …………………………………………………54 5.2 未來展望 ……………………………………………54 參考資料…………………………………………………………55 附錄: 各方案系統溫度容忍度

    1-1] Layard,A.Henry,”Discoveries in the ruins of Nineveh and Babylon: with a travels in Armenia”,
    (1853)
    [1-2] B.Vohnsen, ”A short history of optics”,Phys. scripta. Vol. T109,75-79(2004)
    [1-3] J.J.Fahie, ”Galileo his life and work” , chapter V (1903)
    [1-4] G. Hiziroğlu, “Electromagnetic field theory”,Chap.7, Thomson, (1998)
    [1-5] E.Hecht, “Optics”4th edition, Chap.1, Addison Wesley, (2002)
    [1-6] D.J. Griffiths, “Introduction to quantum mechanics”,2nd edition,Chap.9, Pearson edu. Int. (2005)
    [1-7] T.H. Maiman, “ Stimulated optical radiation in ruby”, Nature, 187, 493-494 (1960)
    [1-8] R. W. Boyd, “Nonlinear optics”, Chap.1, Academic press (2003)
    [1-9] M.M.Fejer, G.A.Magel, D.H.Jundt, R.L.Byer, “Quasi-phase-matched second harmonic generation:
    tuning and tolerances”, IEEE J. of quan. elec., Vol.28, No.11, (1992)
    [1-10] A.Yariv, P.C.Yea, “Optical wave in crystals”, Chap.7, John wiley & sons, Inc. (1984)
    [1-11] Y.R.Shen, N.Bloembergen, “Theory of stimulated Brillouin and Raman scattering”, Phys.rev.
    Vol.137, No.6A, (1965)
    [1-12] S.E. Harris, “Tunable optical parametric oscillators”, Pro. Of the IEEE, Vol.57, No.12 (1969)
    [1-13] P.A.Franken, A.E.Hill, C.W.Peters, G.Weinreich, “Generation of optical harmonics”, Phys.rev.lett.
    Vol.7, No.4 (1961)
    [1-14] N.I.Adams, P.B.Schoefer, “Continuous optical sum frequency generation”, Pro. Of the
    IEEE,Vol .51, Issue 10 (1963)
    [1-15] C.Wang, W.Racette “Measurement of parametric gain accompanying optical difference
    frequency generation” Appl.Phys.Lett. Vol.6, No.8 (1965)
    [1-16] J.A.Giordmaine and R.C .Miller “Tunable coherent parametric oscillation in LiNbO3 at optical
    frequencies”Phys.Rev.Lett.Vol.14,No.24 (1965)
    [1-17] R.S.Weis, T.K.Gaylord, “Lithum niobate : summary of physical properties and crystal structure”,
    Appl.Phys. A 37,191-203 (1985)
    [1-18] C.H Lin, Y.H Chen, S.W. Lin, C.L. Chang, Y.C. Hung, J.Y. Chang “Electro-optic narrowband and
    multi-wavelength filter in aperiodically poled lithium niobate” Opt.Exp. Vol.15, No.15 (2007)
    [1-19] Y.H. Chen, J.W. Chang, C.H. Lin, W.K Chang et.al, “Spectral narrowing and manipulation in an
    oprical parametric oscillator using periodically poled lithium niobate electro-optic
    polarization-mode converters” Vol.36, No.12 (2011)
    [1-20]J.W. Chang, Y.Y. Lai, W.K. Chang, N. Hsu et.al, ”Spectral narrowing and manipulation in optical
    parametric oscillator using APPLN electro-optic polarization-mode converter” Oral paper, CLEO
    (2011)
    [2-1] Guru,Hiziroglu “Electromagnetic field theory fundamentals” Chap.3 Thomson,(1998)
    [2-2] A. Yariv and P. Yeh “Oprical waves in crystals” Chap.7 J.Wiley & Sons. (1983)
    [2-3] A.Yariv “Quantum electronics” Chap.14 J.Wiley & Sons. (1989)
    [2-4] Ivan Šolc “Birefringent chain filters” J. of OSA Vol.55, No.6 (1965)
    [2-5] J.A.Armstrong, N.Bloembergen, J.Ducuing and P.S.Pershan “Interactions between light waves in a
    nonlinear dielectric ” Phys. Rev. Vol.127, No.6 (1962)
    [2-6] L.B.Kreuzer, “Single mode oscillation of a pulsed singly resonant optical parametric oscillator”,
    Appl. Phys.Lett., Vol.15, No.8 (1969)
    [2-7] S.E.Harris, “Tunable optical parametric oscillators”, Proc.of. the IEEE, Vol.57, No.12 (1969)
    [2-8] Saleh and Teich “Fundamentals of photonics” Chap.6 J.Wiley & Sons.(1991)
    [2-9] J.E.Midwinter and J.Warner ”The effects of phase matching method and of uniaxial crystal
    symmetry on the polar distribution of second-order nonlinear oprical polarization” Br.J.Appl.Phys.
    16 1135(1965)
    [2-10] L.E.Myers and W.R. Bosenberg “Periodically poled Lithium Niobate and quasi-phase-matched
    optical parametric oscillators” IEEE J.of Quan.ele.,Vol.33,No.10 (1997)
    [2-11] L.E.Myers, R.C.Echardt, M.M.Fejer, R.L.Byer,et.al, ”Quasi-phase-matched optical parametric
    oscillators in bulk periodically poled LiNbO3”, J.Opt.Soc.Am.B, Vol.12, No.11 (1995)
    [2-12] Y.Y.Zhu, N.B. Ming, “Second-harmonic generation in a Fibonacci optical superlattice and the
    dispersive effect of the refractive index”, Phy.Rev. B, Vol.42, No.6 (1990)
    [2-13] B.Y. Gu, Y. Zhang, B.Z. Dong, “Investigations of harmonic generations in aperiodic optical
    superlattices” J.Appl.Phys. 87, 7629 (2000)
    [2-14] J.Y. Lai, Y.J. Liu, H.Y. Wu, Y.H. Chen, S.D. Yang, “Engineered multiwavelength conversion using
    nonperiodic optical superlattice optimized by genetic algorithm” Opt.Exp. Vol.18, NO.5 (2010)
    [2-15] X.F. Chen, F. W, X.L. Zeng, Y.P. Chen, Y.X. Xia, Y.L. Chen, “Multiple quasi-phase-matching in a
    nonperiodic domain-inverted optical superlattice” Phys.Rev. A 69, 013818 (2004)
    [2-16] W.L.She, W.K.Lee “Wave coupling theory of linear electro-optic effect” Opt.Comm. 195 303-311
    (2001)
    [2-17] A.Yariv “Quantum electronics” Chap.16 J.Wiley & Sons. (1989)
    [2-18] R.A.Baumgartner aand R.L.Byer “Optical parametric amplification”IEEE J.of.Quan.Elec. Vol.
    QE-15, No.6 (1979)
    [3-1] B.Y.Gu, B.Z.Dong, Y.Zhang, G.Z. Yang, “Enhanced harmonic generation in aperiodic optical
    superlattices” Appl.Phys.Lett. 75,3175 (1999)
    [3-2] Y.Y.Zhu, N.B.Ming, “Second-harmonic generation in Fibonacci optical superlattice and the
    dispersive effect of the refractive index” Phys.Rev. Vol.42, No.6 (1990)
    [3-3] C.H Lin, Y.H Chen, S.W. Lin, C.L. Chang, Y.C. Hung, J.Y. Chang, “Electro-optic narrowband and
    multi-wavelength filter in aperiodically poled lithium niobate” Opt.Exp. Vol.15, No.15 (2007)
    [3-4] 呂學聰 “國立中央大學光電科學與工程學系研究所碩士論文” (2010)
    [3-5] M.Lu, X.F.Chen, Y.P.Chen, Y.X.Xia, “Algorithm to design aperiodic superlattice for multiple
    quasi-phase matching” Appl. Opt. Vol.46, No19 (2007)
    [3-6] L.F. Shampine, I.Gladwell,S.Thompson “Solving ODEs with MATLAB” Chap.2 ,Cameridge (2003)
    [3-7] C.F. Gerald, P.O. Wheatley “Applied numerical analysis”4th ed.Chap.5, Ad.We. pub. com.(1989)
    [3-8] J.F. Epperson “An introduction to numerical methods and analysis” J. Wiley & Sons.Inc. (2002)
    [3-9] W.J.Palm III “Introduction to matlab 7 for engineers”, Chap.8 , Mc Graw Hill (2005)
    [3-10] A. Yariv, “Coupled-mode theory for guided-wave optics” IEEE J. of q. Elec.,Vol. QE-9,No.9(1973)
    [3-11] E. Kreyszig, “Advanced engineering mathematics”9th, Chap.2 , J. Wiley & Sons.Inc. (2006)
    [3-12] 賴映佑 “國立中央大學光電科學與工程學系研究所碩士論文” (2010)
    [3-13] Y.Zheng, Y.Kong, X.Chen, “Simultaneous frequency doubling and polarization coupling in
    aperiodically poled lithium niobate” Appl.Phys. B 95 (2009)

    QR CODE
    :::