| 研究生: |
孫嘉亨 Chia-Heng Sun |
|---|---|
| 論文名稱: |
實驗觀測混合式單電子箱中之共同穿隧事件 Experimental determination of the elastic cotunneling rate in a hybrid single-electron box |
| 指導教授: |
陳永富
Yung-Fu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 混合式單電子盒 、單電子電晶體 、共同穿隧 、電子旋轉門 |
| 外文關鍵詞: | hybrid single-electron box, single-electron transistor, cotunneling, single-electron turnstile |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究由三個金屬島構成的混合式單電子盒(hybrid single-electron box)的系統,以鋁做為超導金屬島,並藉由氧化鋁所形成的穿隧接面(tunnel junction)連接兩旁由銅形成的一般金屬島。兩個一般金屬島各自電容耦合一個單電子電晶體(single-electron transistor),觀測這兩個單電子電晶體的電流變化可得知三個金屬島間的電子個數分佈及變化。此外,三個金屬島周圍各有一個電極控制金屬島的電位。我們藉由控制這些電極,操縱電子在金屬島中的傳輸。
「共同穿隧(cotunneling)」這種傳輸機制是混合式單電子電晶體(hybrid single-electron transistor)做為電子旋轉門(single-electron turnstile)的最大誤差來源。研究混合式單電子盒裡的電子「共同穿隧」事件,我們發現測量的共同穿隧率在簡併態時為1Hz,與理論預測之值相符。本實驗幫助我們進一步認識混合式單電子電晶體做為一個電子旋轉門的誤差來源。
We study dynamics of charge configuration in a hybrid single-electron box. The box consists of a superconducting (aluminum) island and two normal metal (cooper) islands. The aluminum island connects to two copper islands via two tunnel junctions formed by aluminium oxide. The charge state of the box is inspected using two capacitively coupled single-electron transistors (SETs). Each island has a nearby gate electrode to control the charge configuration of the box.
"Cotunneling" is the main error process of hybrid SET as a single-electron turnstile. From the study of charge dynamics in a hybrid single-electron box we find the measured cotunneling rate is as low as 1 Hz at degeneracy and compatible with theoretical estimates. The results help to identify the error rate in a hybrid SET.
[1] Likharev, K.K., Single-electron devices and their applications. Proceedings of the Ieee, 1999. 87(4): p. 606-632.
[2] Pekola, J.P., et al., Single-electron current sources: Toward a refined definition of the ampere. Reviews of Modern Physics, 2013. 85(4): p. 1421-1472.
[3] Keller, M.W., et al., Accuracy of electron counting using a 7-junction electron pump. Applied Physics Letters, 1996. 69(12): p. 1804-1806.
[4] Pothier, H., et al., SINGLE ELECTRON PUMP FABRICATED WITH ULTRASMALL NORMAL TUNNEL-JUNCTIONS. Physica B, 1991. 169(1-4): p. 573-574.
[5] Kouwenhoven, L.P., et al., QUANTIZED CURRENT IN A QUANTUM-DOT TURNSTILE USING OSCILLATING TUNNEL BARRIERS. Physical Review Letters, 1991. 67(12): p. 1626-1629.
[6] Ono, Y. and Y. Takahashi, Electron pump by a combined single-electron/field-effect-transistor structure. Applied Physics Letters, 2003. 82(8): p. 1221-1223.
[7] Feltin, N. and F. Piquemal, Determination of the elementary charge and the quantum metrological triangle experiment. European Physical Journal-Special Topics, 2009. 172: p. 267-296.
[8] Pekola, J.R., et al., Hybrid single-electron transistor as a source of quantized electric current. Nature Physics, 2008. 4(2): p. 120-124.
[9] Averin, D.V. and J.P. Pekola, Nonadiabatic charge pumping in a hybrid single-electron transistor. Physical Review Letters, 2008. 101(6).
[10] Lafarge, P., et al., DIRECT OBSERVATION OF MACROSCOPIC CHARGE QUANTIZATION. Zeitschrift Fur Physik B-Condensed Matter, 1991. 85(3): p. 327-332.
[11] Pekola, J.P. and O.P. Saira, Work, Free Energy and Dissipation in Voltage Driven Single-Electron Transitions. Journal of Low Temperature Physics, 2012. 169(1-2): p. 70-76.
[12] Dresselhaus, P.D., et al., MEASUREMENT OF SINGLE-ELECTRON LIFETIMES IN A MULTIJUNCTION TRAP. Physical Review Letters, 1994. 72(20): p. 3226-3229.
[13] Maisi, V.F., et al., Real-Time Observation of Discrete Andreev Tunneling Events. Physical Review Letters, 2011. 106(21).
[14] Jensen, H.D. and J.M. Martinis, ACCURACY OF THE ELECTRON PUMP. Physical Review B, 1992. 46(20): p. 13407-13427.
[15] Kemppinen, A., et al., Quantized current of a hybrid single-electron transistor with superconducting leads and a normal-metal island. European Physical Journal-Special Topics, 2009. 172: p. 311-321.
[16] Maisi, V.F., et al., Parallel pumping of electrons. New Journal of Physics, 2009. 11.
[17] Averin, D.V. and Y.V. Nazarov, SINGLE-ELECTRON CHARGING OF A SUPERCONDUCTING ISLAND. Physical Review Letters, 1992. 69(13): p. 1993-1996.
[18] Berman, D., et al., Single-electron transistor as a charge sensor for semiconductor applications. Journal of Vacuum Science & Technology B, 1997. 15(6): p. 2844-2847.
[19] Sun, C.-H., et al., Experimental determination of the elastic cotunneling rate in a hybrid single-electron box. Applied Physics Letters, 2014. 104(23).
[20] Bubanja, V., Cotunneling suppression in a hybrid single-electron transistor by a dissipative electromagnetic environment. Physical Review B, 2011. 83(19).