跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳宣伃
Hsuan-Yu Chen
論文名稱:
Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays
指導教授: 楊肅煜
Suh-Yuh Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 93
語文別: 英文
論文頁數: 24
外文關鍵詞: equilibrium, periodic solution, global exponential stability, Lyapunov functional, discrete time delay, contraction mapping theorem, cellular neural network
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文摘要
    這篇論文主要研究離散時間遲滯的修正型RTD 雙神經元網路之全局指數穩定。在加入三種不同邊界條件後得到三組修正型RTD 雙神經元細胞網路( DCNNs )的微分方程;每一組微分方程都包含了兩個相似的細胞,每個細胞都有非線性瞬時的自身回饋,並藉由Lipshitz非線性性質與其他細胞互相連結,但卻有不同的離散時間遲滯。每組微分方程都包含外界的輸入,在自身回饋及細胞間連結長度加入適當條件後,建造適當的Lyapunov functionals ,可以驗證出其唯一平衡點具有全局指數穩定的特性;若是給定週期之外界輸入,則可驗證出每
    組微分方程的週期解也具有全局指數穩定的特性。最後我們也搭配一些數值結果來驗證理論分析。


    Abstract
    In this thesis, we study the global exponential stability of the modi¯ed RTD-based two-neuron networks with discrete time delays. After imposing the periodic, Dirichlet or Neumann boundary conditions, the resulting systems consist of two identical neurons, each possessing nonlinear instantaneous self-feedback
    and connected to the other neuron via a Lipschitz nonlinearity but with di®erent
    discrete time delays. For each two-neuron system with constant external inputs, under appropriate conditions on the self-feedback and connection strengths, we prove the unique equilibrium is globally exponentially stable by constructing a
    suitable Lyapunov functional. On the other hand, for such two-neuron systems with periodic external inputs, combining the techniques of Lyapunov functional with the contraction mapping theorem, we propose some su±cient conditions
    for establishing the existence, uniqueness and global exponential stability of the periodic solutions. Numerical results are also provided to demonstrate the theoretical analyses.

    Contents ² Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ² Periodic boundary condition . . . . . .. . . . . . . . . . . . . 3 ² Dirichlet boundary condition . . . . . . . . . . . . . . . . . 13 ² Neumann boundary condition . . . . .. . . . . . . . . . . . . . 17 ² Concluding remarks . . . . . . . . .. . . . . . . . . . . . . . 22 ² References . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    References
    [1] J. Cao and Q. Li, On the exponential stability and periodic solutions of
    delayed cellular neural networks, J. Math. Anal. Appl., 252 (2000), pp.50-64.
    [2] J. Cao and D. Zhou, Stability analysis of delayed cellular neural networks
    Neural networks, 11 (1998), pp. 1601-1605.
    [3] L. O. Chua, CNN: A Paradigm for Complexity, World Scienti¯c Series on
    Nonlinear Science, Series A, Vol. 31, World Scienti¯c, Singapore, 1998.
    [4] L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans.
    Circuits Syst., 35 (1988), pp. 1257-1272.
    [5] L. O. Chua and L. Yang, Cellular neural networks: Applications, IEEE
    Trans. Circuits Syst., 35 (1988), pp.1273-1290.
    [6] P. van den Driessche, J. Wu, and X. Zou, Stabilization role of inhibitory
    self-connections in a delayed neural network, Physica D, 150 (2001), pp.
    84-90.
    [7] P. van den Driessche and X. Zou, Global attractivity in delayed Hop¯eld
    neural network models, SIAM J. Appl. Math., 58 (1998), pp. 1878-1890.
    [8] K. Gopalsamy and X.-Z. He, Stability in asymmetric Hop¯eld nets with
    transmission delays, Physcia D, 76 (1994), pp. 344-358.
    [9] K. Gopalsamy and I. Leung, Delay induced periodicity in a neural netlet
    of excitation and inhibition, Physcia D, 89 (1996), pp. 395-426.
    [10] C.-H. Hsu and S.-S. Lin, Existence and multiplicity of traveling waves in a lattice dynamical system, J. Di®. Eqns., 164 (2000), pp. 431-450.
    [11] C.-H. Hsu, S.-S. Lin and W. Shen, Traveling waves in cellular neural net-
    works, Internat. J. Bifur. and Chaos, 9 (1999), pp. 1307-1319.
    [12] C.-H. Hsu and S.-Y. Yang, On camel-like traveling wave solutions in cellular neural networks, J. Di®. Eqns., 196 (2004), pp. 481-514.
    [13] C.-H. Hsu and S.-Y. Yang, Wave propagation in RTD-based cellular neural
    networks, J. Di®. Eqns., 204 (2004), pp. 339-379.
    [14] C.-H. Hsu and S.-Y. Yang, Structure of a class of traveling waves in delayed cellular neural networks, DCDS, Series A, 13 (2005), pp. 339-359.
    [15] C.-H. Hsu and S.-Y. Yang, Existence of monotonic traveling waves in mod-
    i¯ed RTD-based cellular neural networks, to appear in DCDS, Expanded
    Volume.
    [16] C.-H. Hsu, S.-Y. Yang, T.-H. Yang, and T.-S. Yang, On periodic solutions
    of a two-neuron network system with sigmoidal activation functions, to
    appear in Internat. J. Bifur. and Chaos.
    [17] M. Itoh, P. Julian, and L. O. Chua, RTD-based cellular neural networks
    with multiple steady states, Internat. J. Bifur. and Chaos, 11 (2001), pp.
    2913-2959.
    [18] J. Juang and S.-S. Lin, Cellular neural networks: mosaic pattern and spa-
    tial chaos, SIAM J. Appl. Math., 60 (2000), pp. 891-915.
    [19] P. Weng and J. Wu, Deformation of traveling waves in delayed cellular
    neural networks, Internat. J. Bifur. and Chaos, 13 (2003), pp. 797-813.

    QR CODE
    :::