跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭翔仁
Hsiang-Jen Cheng
論文名稱: 粉體熔融式凝聚機制與成長狀態
Granular Growth Mechanisms and Behaviors in Melt Agglomeration
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 99
語文別: 英文
論文頁數: 145
中文關鍵詞: 高剪力混合槽成長形態凝聚機制黏著劑成核掃描式電子顯微鏡潤濕特性接觸角量測儀異質性分布同質性分布
外文關鍵詞: scanning electron microscope, wetting property, heterogeneous dispersion, homogeneous dispersion, binder, granulation mechanism, growth behavior, high-shear mixer, nucleation, particle image velocimetry
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以實驗的方式探討粉體物質添加黏著劑,受到水平與垂直雙葉片高剪力攪拌時,內部粉體的凝聚行為。探討主題包含凝聚機制、粉體速度場分布、成品外型、表面結構以及成長形態。
    首先建構濕式粉體凝聚設備--高剪力混合槽,用以操作所有基礎之凝聚現象。在碳酸鈣粉體低初始粒徑(32-75 μm)以及主葉片低轉速(300rpm)搭配下,粒徑分布隨操作時間呈現不同機制特性,包含成核、緊實或合併等現象,並進一步分析黏著劑黏度與含量的影響。
    其二以原凝聚設備,在碳酸鈣粉體高初始粒徑(75-150 μm)以及主葉片高轉速(500-700rpm)搭配下,配合影像處理技術和顆粒追蹤方法,觀察混合槽內混亂流場情況,並利用掃描式電子顯微鏡和成長機制的特性,深入探討不同粉體物質填充量對外型、結構和粒徑分布的影響。
    其三另外建構接觸角量測儀,用以觀察三種不同粉體物質:碳酸鈣、硫酸鈣和碳酸鈉在相同初始粒徑(75-150 μm)下,所受高溫黏著劑潤濕特性,進而應用潤濕特性觀察放入混合槽內凝聚狀態。由研究中發現粉體對黏著劑液體較慢潤濕的異質性分布現象,易促使誘入至高速凝聚大粒徑;而潤濕能力強之同質性分布現象則易導致零星的成核現象與小粒徑顆粒體。


    The experimental methods were employed to investigate the granulation behavior of powder materials and binder liquid under the impeller and chopper mixing force. The main research topics include the granulation mechanisms, the velocity field of granules, the morphology of pellet, and the growth behaviors.
    The agglomeration equipment— a high-shear mixer was designed and prepared at first. The raw materials included calcium carbonate powders with an average particle size of 32-75 μm and been operated on low impeller speed (300 rpm). Three major agglomeration mechanisms are discussed in this study: nucleation, consolidation and coalescence. The influence of binder viscosity and content are further presented.
    The second research involved the effects of different initial volume fill ratios of the granulator on granular agglomeration. Calcium carbonate powders, with mean granule sizes of 75-150 μm were used as the raw material. Experiments of fill ratios are conducted for three conditions of parameters, (i) PEG 6000 and impeller speed at 500 rpm, (ii) PEG 6000 and impeller speed at 700 rpm, and (iii) PEG 4000 and impeller speed at 500 rpm. The range in granule size at the end of agglomeration increased as initial fill ratio increased. Low Vacuum Scanning Electron Microscope (LV-SEM) images of the surface structure of the granules are shown and the pellet shapes are also presented by the aspect ratio during the nucleation and final stages. On the other hand, the particle image velocimetry (PIV) experiments were also conducted by recording the moving granules during the mixing period with a high-speed Complementary Metal-Oxide-Semiconductor (CMOS) camera.
    The third research was to investigate the effects of the different surface properties of powders on granular agglomeration. Three different powders, with mean granule sizes of 75-150 μm were used as the raw material: calcium carbonate, calcium sulfate, and sodium carbonate. The wetting properties of the raw materials were measured with a contact angle instrument. The results indicate that the speed at which the droplets sink into the powder bed and the contact angle of binder droplets on the powder surface play important roles in determining the progress of the agglomeration process. Several types of agglomeration were found: a slurry state, only nucleation, snowballing, and induction growth behavior. The heterogeneity and homogeneity of the dispersion brought about by the coalescence, layering and slow-wetting behaviors were analyzed. A heterogeneous dispersion leads to induction behavior and subsequent growth, but a homogeneous dispersion leads to little or no nucleation and non-enlargement of size.

    摘要 i Abstract ii Acknowledgements v Contents vi List of Figures x List of Tables xvii List of Symbols xviii Chapter 1 1 Introduction 1 1.1 Overview of granulation 1 1.2 Granulation mechanism 2 1.2.1 Wetting and nucleation 3 1.2.2 Consolidation and growth 6 1.2.3 Attrition and breakage 9 1.3 Powder and binder properties 10 1.4 Interaction between powder and binder 12 1.5 Fill ratio 13 1.6 Agitation in a high shear mixer 14 1.7 Growth regime map 16 1.8 The topics of the research 17 Chapter 2 22 The experimental set up and analyses 22 2.1 The apparatus of granulator 22 2.2Materials 22 2.3 Agglomeration procedure 23 2.4 Analysis of wetting ability 24 2.5 Analysis of granular size 24 2.6 Analysis of thermogravimetric 25 2.7 Photographs 25 2.8 Analysis of velocity field 26 Chapter 3 39 Influence of the binder content and viscosity on melt agglomeration behavior 39 3.1 Preface 39 3.2 Granulation mechanism 40 3.3 The effect of liquid content 41 3.4 Viscosity effect 45 3.5 Viscosity and liquid ratio 50 Chapter 4 68 Influence of the initial volume fill ratio of the granulator on melt agglomeration behavior 68 4.1 Preface 68 4.2 PEG6000 and 500rpm 69 4.2.1 Mean size 69 4.2.2 Size distribution 71 4.2.3 SEM images 72 4.2.4 Aspect ratio 73 4.3 PEG6000 and 700rpm 74 4.3.1 Mean size 74 4.3.2 Size distribution 75 4.3.3 Aspect ratio 76 4.4 PEG4000 and 500rpm 77 4.4.1 Mean size 77 4.4.2 Size distribution 77 4.4.3 Aspect ratio 78 4.5 Analysis of total granulations 79 4.5.1 Aspect ratio 79 4.5.2 Analysis of PIV 79 4.5.3 Analysis of size distribution 81 Chapter 5 108 Influence of the interaction between binder and powders on melt agglomeration behavior 108 5.1 Preface 108 5.2 Wetting ability 108 5.3 Mean size distribution 110 5.4 Size distribution 113 5.5 SEM images 117 Chapter 6 135 Conclusions 135

    Braumann, A., Goodson, M. J., Kraft, M., and Mort, P. R., “Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction,” Chem. Eng. Sci. 62 (2007) 4717-4728.
    Bock, T. K., and Kraas, U., “Experience with the diosna mini-granulator and assessment of process scalability,” Eur. J. Pharm. Biopharm., 52 (2001) 297-303.
    Benali, M., Gerbaud, V., and Hemati, M., “Effect of operating conditions and physic-chemical properties on the wet granulation kinetics in high shear mixer,” Powder Technol. 190 (2009) 160-169.
    Beekman, W. J., Meesters, G. M. H., Scarlett, B., and Becker, T., “Measurement of granule attrition and fatigue in a vibrating box,” Part. Part. Syst. Charact., 19 (2002) 5-11.
    Beekman, W. J., Meesters, G. M. H., Becker, T., Gaertner, A., Gebert, M., Scarlrtt, B., “Failure mechanism determination for industrial granules using a repeated compression test,” Powder Technol., 130 (2003) 367-376.
    Cheng, H. J., and Hsiau, S. S., “The study of granular agglomeration mechanism,” Powder Technol., 199 (2010) 272-283.
    Chitu, T. M., Oulahna, D., and Hemati, M., “Wet granulation in laboratory scale high shear mixer: Effect of binder properties,” Powder technol., 206 (2011a) 25-33.
    Chitu, T. M., Oulahna, D., and Hemati, M., “Wet granulation in laboratory-scale high shear mixer: Effect of chopper presence, design and impeller speed,” Powder technol., 206 (2011b)34-43.
    Ennis, B. J., Tardos, G., and Pfeffer, R., “A microlevel-based characterization of granulation phenomena,” Powder Technol., 65 (1991) 257-272.
    Ennis, B. J., and Litster, J. D., “Size reduction and size enlargement, in: R. Perry and D. Green (Eds.),” Perry’s Chemical Engineers’ Handbook, 7th edition, McGraw-Hill. (1997) 20-56 to 20-58.
    Eliasen, H., Schæfer, T., and Kristensen, H. G., “Effect of binder rheology on melt agglomeration in a high shear mixer,” Int. J. Pharm., 176 (1998) 73-83.
    Fan, X., Yang, Z., Parker, D. J., Ng, B., and Ghadiri, M., “Impact of surface tension and viscosity on solids motion in a conical high shear mixer granular,” AICHE J., 55 (2009) 3088-3098.
    Fu, J., Adams, M. J., Reynolds, G. K., Salman, A. D., and Hounslow, M. J., “Impact deformation and rebound of wet granules,” Powder Technol., 140 (2004) 248-257.
    Hapgood, K. P., Litster, J. D., Smith, R., “Nucleation regime map for liquid bound granules,” AICHE J., 49-2 (2003) 350-361.
    Hoornaert, F., Wauters, P. A. L., Meesters, G. M. H., and Pratsinis, S. E., “Agglomeration behaviour of powders in a Lödige mixer granulator,” Powder Technol., 96 (1998) 116-128.
    Iveson, S. M., and Litster, J. D., “Growth regime map for liquid-bound granules,” AICHE J., 44 (1998) 1510-1518.
    Iveson, S. M., Litster, J. D., and Ennis, B. J., “Fundamental studies of granule consolidation Part 1: Effects of binder content and binder viscosity,” Powder Technol., 88 (1996) 15-20.
    Iveson, S. M., and Litster, J. D., “Fundamental studies of granule consolidation Part 2: Quantifying the effects of particle and binder properties,” Powder Technol., 99 (1998) 243-250.
    Iveson, S. M., Litster, J. D., Hapgood, K., and Ennis, B. J., “Nucleation, growth and breskage phenolmena in agitated wet granulateon processes : a review,” Powder Technol., 117 (2001a) 3-39.
    Iveson, S. M., Wauters, P. A. L., Forrest, S., Litster, J. D., Meesters, G. M. H., and Scarlett, B., “Growth regime map for liquid-bound granules: further development and experimental validation,” Powder Technol., 117 (2001b) 83-97.
    Johansen, A., and Schæfer, T., “Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer,” Euro. J. Pharm. Sci., 14 (2001a) 135-147.
    Johansen, A., and Schæfer, T., “Effects of interaction between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer,” Euro. J. Pharm. Sci., 12 (2001b) 297-309.
    Knight, P. C., Instone, T., Pearson, J. M. K., and Hounslow, M. J., “An investigation into the kinetics of liquid distribution and growth in high shear mixer agglomeration,” Powder Technol., 97 (1998) 246-257.
    Keningley, S. T., Knight, P. C., and Marson, A. D., “An investigation into the the effects of binder viscosity on agglomeration behavior,” Powder Technol., 91 (1997) 95-103.
    Lachiver, E. D., Abatzoglou, N., Cartilier, L., and Simard, J. S., “Agglomeration tendency in dry pharmaceutical granular systems,” Eur. J. Pharm. Biopharm., 64 (2006) 193-199.
    Leelamanie, D. A. L., and Karube, J., “Time dependence of contact angle and its relation to repellency persistence in hydrophobized sand,” Soil Sci. Plant Nutr., 55 (2009) 457-461.
    Leelamanie, D. A. L., Karube, J., and Yoshida, A., “Characterizing water repellency indices: contact angle and water drop penetration time of hydrophobized sand,” Soil Sci. Plant Nutr., 54 (2008a) 179-187.
    Leelamanie, D. A. L., Karube, J., and Yoshida, A., “Relative humidity effects on contact angle and water drop penetration time of hydrophobized fine sand,” Soil Sci. Plant Nutr., 54 (2008b) 695-700.
    Liu, L. X., Litster, J. D., Iveson, S. M., and Ennis, B. J., “Coalescence of deformable granules in wet granulation processes,” AICHE J., 46 (2000) 529-539.
    Mangwandi, C., Adams, M. J., Hounslow, M. J., and Salman, A. D., “Effect of batch size on mechanical properties of granules in high shear granulation,” Powder Technol., 206 (2011) 44-52.
    Mills, P. J. T., Seville, J. P. K., Knight, P. C., and Adams, M. J., “The effect of binder viscosity on particle agglomeration in a low shear mixer/agglomerator,” Powder Technol., 113 (2000) 140-147.
    Mort, P. R., “Scale-up of binder agglomeration processes,” Powder Technol., 150 (2005) 86-103.
    Muzzio, F. J., Shinbrot, T., and Glasser, B. J., “Powder technology in the pharmaceutical industry: the need to catch up fast,” Powder Technol., 124 (2002) 1-7.
    Nguyen, T., Shen, W., and Hapgood, K., “Drop penetration time in heterogeneous powder beds,” Chem. Eng. Sci., 64 (2009) 5210-5221.
    Ohno, I., Hasegawa, S., Yada, S., Kusai, A., Moribe, K., and Yamamoto, K., “Importance of evaluating the consolidation of granules manufactured by high shear mixer,” Int. J. Pharm. 338 (2007) 79-86.
    Pudasaini, S. P., Hsiau, S. S., Wang, Y., and Hutter, K., “Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions,” Phys. Fluids, 17 (2005) 193301.
    Pudasaini, S. P., Hutter, K., Hsiau, S. S., Tai, S. C., Wang, Y., and Katzenbach, R., “Rapid flow of dry granular materials down inclined chutes impinging on rigid walls,” Phys. Fluids, 19 (2007) 053302.
    Pudasaini, S. P., and Hutter, K., “Avalanche dynamics,” Springer, (2007)467-468.
    Rough, S. L., Wilson, D. I., York, D. W., “A regime map for stages in high shear mixer agglomeration using ultra- high viscosity binders,” Adv. Powder Technol., 16-4 (2005) 373-386.
    Samimi, A., Ghadiri, M., Boerefijn, R., Groot, A., and Kohlus, R., “Effect of structural characteristics on impact breakage of agglomerates,” Powder Technol., 130 (2003) 428-435.
    Saito, Y., Fan, X., Ingram, A., Secille, J. P. K., “A new approach to high-shear mixer granulation using positron emission particle tracking,” Chem. Eng. Sci., 66 (2011) 563-569.
    Schæfer, T., and Mathiesen, C., “Melt pelletization in a high shear mixer. VIII. Effects of binder viscosity,” Int. J. Pharm., 139 (1996a) 125-138.
    Schæfer, T., and Mathiesen, C., “Melt pelletization in a high shear mixer. IX. Effects of binder particle size,” Int. J. Pharm., 139 (1996b) 139-148.
    Schæfer, T., Holm, P., and Kristensen, H. G., “Melt pelletization in a high shear mixer. II. Powder consumption and granule growth,” Acta Pharm. Nord., 4(1992) 141-148.
    Schæfer, T., Johansen, D., and Johansen, A., “Effect of powder particle size and binder viscosity on intergranular and intragranular particle size heterogeneity during high shear granulation,” Euro. J. Pharm. Sci., 21 (2004) 525-531.
    Schaafsma, S. H., Vonk, P., Segers, P., and Kossen, N. W. F., “Description of agglomerate growth,” Powder Technol., 97 (1998) 183-190.
    Scott, A. C., Hounslow, M. J., and Instone, T., “Direct evidence of heterogeneity during high-shear granulation,” Powder Technol., 113 (2000) 205-213.
    Tardos, G. I., Khan, M. I., and Mort, P. R., “Critical parameters and limiting conditions in binder granulation of fine powders,” Powder Technol., 94 (1997) 245-258.
    Tardos, G. I., “Wet-granulation research with application to scale-up,” China Part., 3 (2005) 191-195.
    Thies, R., and Kleinebudde, P., “Melt pelletisation of a hygroscopic drug in a high shear mixer part 2. Mutual compensation of influence variables,” Euro. J. Pharm. Sci., 10 (2000) 103-110.
    Tereshita, K., Nishimura, T., and Natsuyama, S., “Optimization of operating conditions in a high-shear mixer using DEM model: determination of optimal fill level,” Chem. Pharm. Bull., 50 (12) (2002) 1550-1557.
    Van den Dries, K., and Vromans, H., “Quantitative proof of liquid penetration- involved granule formation in a high shear mixer,” Powder Technol., 189 (2009)165-171.
    Vonk, P., Guillaume, C. P. F., Ramaker, J. S., Vromans, H., and Kossen, N. W. F., “Growth mechanisms of high-shear pelletisation,” Int. J. Pharm., 157 (1997) 93-102.
    Wauters, P. A. L., Jakobsen, R. B., Litster, J. D., Meesters, G. M. H., and Scarlett, B., “Liquid distribution as a means to describing the granule growth mechanism,” Powder Technol., 123 (2002a) 166-177.
    Wauters, P. A. L., van de Water, R., Litster, J. D., Meesters, G. M. H., Scarlett, B., “Growth and compaction behavior of copper concentrate granules in a rotating grum,” Powder Technol., 124 (2002b) 230-237.
    Yang, W. L., and Hsiau, S. S., “The effect of liquid viscosity on sheared granular flows,” Chem. Eng. Sci., 61 (2006) 6085-6095.

    QR CODE
    :::