跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳尚儒
Shang-Ju Wu
論文名稱: Ka頻段低功耗低雜訊放大器之設計與實現
Design and Implementation of Ka-Band Low Power Consumption Low Noise Amplifier
指導教授: 邱煥凱
Hwann-Kaeo Chiou
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 41
中文關鍵詞: Ka頻段低雜訊放大器
外文關鍵詞: Ka-band, low noise amplifier
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究內容為Ka頻段射頻毫米波前端電路-低雜訊放大器之設計,所設計的晶片是利用TSMC 0.18 ?m CMOS製程研製。低雜訊放大器使用兩級疊接式架構來實現,前級針對低雜訊做匹配,後級則是以取得高增益為目標。電路在設計時加入一個串聯電感在共源極和共閘極電晶體之間來提高電晶體的fT值,進而使電路整體增益增加,雜訊減少。
    所設計之晶片其量測結果如下,當總功率消耗為4.56 mW時,Ka頻段低雜訊放大器增益在29.1 GHz達到11.24 dB,雜訊指數為8.09 dB,輸入和輸出反射損耗在28 GHz皆大於7.1 dB。輸入1-dB壓縮點和三階截斷點在29 GHz分別為-25 dBm和-16 dBm。當總直流功耗為7.95 mW時,在29.4 GHz得到的小信號增益為16.5 dB,最小雜訊指數在28 GHz為6.92 dB,輸入和輸出反射損耗在28 GHz分別為5.35 dB和11.7 dB。晶片面積為0.66 × 0.93 mm2。


    The subject of paper is to present the low noise amplifier of RF front-end circuits for Ka-band receiver being implemented on TSMC 0.18-μm CMOS technology. The low noise amplifier is implemented by a cascoding two stages. The first stage is designed for low noise performance while the second stage is matched for high gain. The circuit design by adding a series inductor between the CS and CG transistors to improve the transistors’ fT for increasing the circuit’s overall gain, and reducing the noise figure (NF).
    The measured results of the designed circuit are illustrated as follows: when the total DC power consumption is 4.56 mW, the Ka-band LNA achieve a gain of 11.24 dB at 29.1 GHz, noise figure of 8.09 dB, and the input/output return losses are more than 7.1 dB at 28 GHz. The input 1-dB power gain compression point (P1dB) and the input third-order interception point (IIP3) at 29 GHz occur at -25 dBm and -16 dBm, respectively. When the total DC power consumption is 7.95 mW, the obtained small signal gain is 16.5 dB at 29.4 GHz and minimum NF of 6.92 dB at 28 GHz. The input/output return losses are 5.35 dB and 11.7 dB at 28 GHz. The occupied chip area is 0.66 × 0.93 mm2.

    Chinese Abstract I Abstract II Acknowledgement III Table of Contents V List of Figures VII List of Tables IX Chapter 1 1 Introduction 1 1.1 The Microwave circuits research background 1 1.2 Motivation 2 1.3 Achievements 4 1.4 Thesis Organization 4 Chapter 2 6 Principles of Low Noise Amplifier Design 6 2.1 Introduction 6 2.2 Transistor Modeling 7 2.3 Source of Noise 9 2.3.1 Thermal Noise 10 2.3.2 Shot Noise 11 2.3.3 Flicker Noise 12 2.4 Important Parameters of the LNA 12 2.5 Impedance Matching 18 Chapter 3 19 Ka-Band Low Noise Amplifier 19 3.1 Introduction 19 3.2 Circuit Structure 19 3.3 Design Flow 23 3.4 Layout Consideration 24 3.5 Simulated and Measured Results 26 3.6 Summary 37 Chapter 4 38 Conclusion 38 4.1 Conclusion 38 4.2 Future Work 39 References 40

    [1] IEEE 802.16.2-2001, “IEEE recommended practice for local and metropolitan area networks–coexistence of fixed broadband wireless access systems,” Sep. 2001.
    [2] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Millimeter-wave CMOS design”, IEEE J. Solid-state Circuits, vol. 40, pp. 144-155, Jan. 2005.
    [3] T. Manku, “Microwave CMOS-device physics and design”, IEEE J.
    Solid-State Circuits, vol. 34, pp. 277-285, March 1999.
    [4] H. T. Friis, “Noise figure of radio receivers,” Proceedings on IRE, vol. 32, no. 7, pp. 419-422, July 1944.
    [5] B. Razavi, “RF Microelectronics, Prentice Hall”, Upper Saddle River, 1998.
    [6] J. Rollett, “Stability and power gain invariants of linear two ports”, IRE Transactions on Circuit Theory, CT-9, pp. 29-32, March 1962.
    [7] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio”, IEEE Journal of Solid-State Circuits, vol. 42, no. 5, May 2007.
    [8] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5 GHz CMOS low-noise amplifier,” IEEE J. of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
    [9] X. Guan and A. Hajimiri, “A 24-GHz CMOS front end”, IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
    [10] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18 µm CMOS technology”, IEEE Microwave Wireless Component Letter, vol. 14, no. 3, pp. 106-108, March 2004.
    [11] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 µm CMOS technology”, IEEE Microwave Wireless Component Letter, vol. 15, no. 7, pp. 448-450, July 2005.
    [12] S.-H. Yen and Y.-S. Lin, “Ka-band low noise amplifier using standard 0.18 ?m CMOS technology”, Electronics Letters, vol. 42, no.16, August 2006.
    [13] B. Afshar and A. M. Niknejad, “X/Ku band CMOS LNA design techniques”, Proceedings of CICC, pp. 389-392, 2006.
    [14] M. A. T. Sanduleanu, G. Zhang, and J. R. Long, “31-34GHz low noise
    amplifier with on-chip microstrip lines and inter-stage matching in 90-
    nm baseline CMOS”, Proceedings of RFIC, pp. 143-146, 2006.
    [15] E. Adabi, B. Heydari, M. Bohsali, and A. M. Niknejad, “30 GHz CMOS low noise amplifier”, Proceedings of RFIC, pp. 625-628, 2007.
    [16] Y.-L. Wei, S.-H. Hsu, and J.-D. Jin, “A low-power low-noise amplifier for K-band applications”, IEEE Microwave Wireless Component Letter, vol. 19, no. 2, Feb. 2009.
    [17] Sheng-Chi Chen, “Implementation of RF Receiver Front-End Circuits for Ka-Band Applications,” Master thesis, National Central University, 2008.
    [18] Kai-Yun Lin, “Implementation of Ka-Band and V-Band Low Noise Amplifier and Broadband Amplifier,” Master thesis, National Central University, 2006.
    [19] Hsing-Lung Tu, “The Study on Wireless Transceiver Front-end Circuits and Related Passive Device,” Master thesis, National Central University, 2005.
    [20] Wen-Yuan Liu, “Analysis, Design, and Realization of Ka band Low Noise Amplifier and Coplanar Waveguide Lowpass Filter,” Master thesis, National Central University, 2004.

    QR CODE
    :::