| 研究生: |
吳恕銘 Shu-Ming Wu |
|---|---|
| 論文名稱: |
Studies on Fractional Brownian Motion: Its Representations and Properties |
| 指導教授: |
趙一峰
I-F. Chao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 分數布朗運動 、分數微積分 |
| 外文關鍵詞: | fractional calculus, fBm |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分數布朗運動的表現是以分數微積分作基礎。在本篇文章裡我們
會先討論到分數微積分的定義以及性質,包括存在性、函數的微分與
積分的不同表示法、互為反算子、以及半群性質。再來,利用維納積
分定義分數布朗運動,並且利用分數微積分展示出分數布朗運動的核
的不同的表示法。文章的末了我們也會討論一些有關分數布朗運動的
一些性質。
In this thesis, we discuss the representations of fractional Brownian
motion (fBm) and properties of fBm. We name it “fractional” because the
kernels can be represented by fractional calculus. My thesis has three
contributions. First, we show some properties about fractional calculus,
including existence, various expressions of derivative and integral of
function, inverse operators, and semigroup property. Second, we propose
to use fractional calculus to indicate fBm and different representations of
kernels. Finally, we show some properties of fBm in the end of this thesis.
[1] Larry C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Publishing Company, New York, 1985.
[2] Francesca Biagini, et al., Stochastic Calculus for Fractional Brownian Motion and Applications, Springer-Verlag, London, 2008.
[3] John B. Conway, Functions of One Complex Variables I , Springer-Verlag, New York, 1978.
[4] Harry Hochstadt, The Function of Mathematical Physics, Pure and Applied Mathematics, Vol. 23, John Wiley & Sons, Canada, 1971.
[5] Ioannis Karatzas, Steven E. Shreve, Brownian Motion and Stochastic Calculus, 2nd edition, Springer-Verlag, New York, 1991.
[6] Hui-Hsiung Kuo, Introduction to Stochastic Integration, Springer, 2006.
[7] Tom Lindstrom, “Fractional Brownian fields as integrals of white noise”, Bull. London Math. Soc. Vol.25, No.1, pp.83-88, 1992.
[8] Bernt Oksendal , Stochastic Differential Equations-An Introduction with Application, 6th edition, Springer, Berlin Heidelberg, 2003.
[9] Vladas Pipiras and Murad S. Taqqu, “Deconvolution of fractional Brownian motion”, Journal of Time Series analysis, Vol. 23, No. 4, pp. 487-501, 1999.
[10]Vladas Pipiras and Murad S. Taqqu, “Are classes of diereministic integrands for fractional Brownian motion on an interval complete? ”, Bernoulli, Vol. 7, No. 6, pp. 873-897, Dec. 2001.
[11]Vladas Pipiras and Murad S. Taqqu, “Fractional calculus and its connection to fractional Brownian motion”, Theory and Applications of Long-Range Dependence, Birkhäuser Boston, Boston, MA, pp. 165-201, 2003.
[12]Igor Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation”, Fractional Calculus & Applied Analysis, Vol. 5, No. 4, pp. 367-386, 2002.
[13]L. C. G. Rogers, “Arbitrage with fractional Brownian motion”, Mathematical Finance, Vol. 7, No. 1, pp. 95-105, Jan. 1997.
[14]Stefan G. Samko, et al., Fractional Integrals and Derivatives-Theory and Application, OPA(Amsterdam) B.V., 1993.
[15]Gennady Samorodnitsky, Murad S. Taqqu, Stable Non-Gaussian Random Processes-Stochastic Models with Infinite Variance, Chapman & Hall, New York, 1994
[16]Richard L. Wheeden, Antoni Zygmund, Measure and Integral: An Introduction to Real Analysis, Pure and Applied Mathematics, Vol. 43, Marcel Dekker, 1977.