跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊佳健
ZHUANG JIA JIAN
論文名稱: MOCVD承載盤設計分析與實驗驗證
Design and Analysis of Susceptor for MOCVD with Experimental Verification
指導教授: 林志光
Lin Chih Kuang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: 有機金屬化學氣相沉積晶圓翹曲溫度分布載盤設計
外文關鍵詞: MOCVD, Wafer warpage, Temperature distribution, Susceptor
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前氮化鎵(GaN)發光二極體(LED)的主要生成方式為在藍寶石晶圓上透過有機金屬氣相沉積(MOCVD)使其磊晶GaN薄膜。由於磊晶腔體內的零組件配置與加熱器設計等因素會影響晶圓表面溫度均勻度以及晶圓翹曲等問題。本研究利用有限元素法計算在MOCVD反應腔體中承載盤與晶圓的表面溫度分布以及由於晶圓表面溫度分布不均勻所產生的熱應力和薄膜與晶圓熱膨脹係數不匹配所導致的晶圓翹曲量,探討承載盤設計對晶圓與GaN薄膜上的溫度分布及晶圓翹曲的影響。
    本研究先利用有限元素法計算承載盤在腔體內受石墨加熱器加熱後的載盤表面溫度分布,並利用實驗驗證分析結果的可靠度,再進一步計算晶圓放置於承載盤上受加熱後的晶圓表面溫度,並與實驗量測結果比對驗證,確認模擬結果的有效性。本研究也根據晶圓放置於未改良設計之承載盤上的晶圓表面溫度分布,設計一凹槽載盤,將凹槽建立在載盤底部及晶圓槽底部,藉此改變承載盤內部熱傳及承載盤與晶圓之間的熱傳條件,以提升晶圓表面的均溫性,進而提升GaN薄膜磊晶品質。經比對計算與實驗結果,發現量測承載盤表面與晶圓表面溫度分布結果與模擬分析結果的誤差百分比皆小於5%,證實本研究所建立計算模型的有效性及便利性。本研究同時也計算晶圓放置於未改良設計之承載盤與改良設計之凹槽承載盤磊晶GaN薄膜後,系統降至室溫的晶圓翹曲量,模擬分析結果顯示,藉由改善晶圓表面的溫度梯度可以有效地降低晶圓與薄膜系統冷卻至室溫的晶圓翹曲量。


    Metal organic chemical vapor deposition (MOCVD) process is a technology in fabrication of GaN-based optoelectronic devices, such as LEDs. The substrate for growing GaN thin film is usually sapphire. Temperature distribution on the substrate surface is affected by the component and heater configuration in the MOCVD reaction chamber. In addition, wafer warpage is an issue in MOCVD process. The aim of this work is using finite element method (FEM) to systematically calculate the temperature distribution on the surface of susceptor and wafer substrate. Wafer warpage induced by mismatch in coefficient of thermal expansion between substrate and thin film is also investigated.
    Temperature distribution on the surface of susceptor and wafer substrate in a given MOCVD reactor is calculated by FEM simulation and measured in experiment. According to the temperature distribution on the wafer substrate placed on an original, plain susceptor, designed grooves are made on the back side of susceptor and on the bottom surface of wafer pockets to improve temperature uniformity on the wafer substrate by changing heat transfer conditions in the susceptor and between susceptor and wafer substrate. By doing so, it is expected to produce a better-quality film. Temperature difference in percentage between simulations and experimental results is less than 5%. Effectiveness of the constructed FEM model is validated by such a good agreement between simulations and experimental measurements. Warpage of wafer placed on plain susceptor and on grooved susceptor is also investigated in this study. Simulation results indicate the wafer warpage is effectively reduced by improving temperature uniformity on the wafer substrate through the groove design in susceptor.

    LIST OF TABLES III LIST OF FIGURES V 1. INTRODUCTION 1 1.1 Metal Organic Chemical Vapor Deposition 1 1.1.1 Basic principles of MOCVD 1 1.1.2 MOCVD reactor components 2 1.2 Susceptor Design 5 1.3 Purpose 8 2. MODELING 10 2.1 Modeling for Temperature Distribution 10 2.1.1 Finite element model and material properties 10 2.1.2 Thermal boundary conditions 11 2.2 Modeling for Wafer Bow 12 2.2.1 Finite element model 12 3. EXPERIMENT 15 3.1 Temperature Measurement 15 3.1.1 Experimental setup 15 3.1.2 Experimental procedures 15 4. RESULTS AND DISCUSSION 17 4.1 Temperature Distribution on Plain Susceptor 17 4.1.1 Simulation results 17 4.1.2 Experimental results 18 4.1.3 Comparison between simulation and experimental results 18 4.2 Temperature Distribution on the Wafer in Plain Susceptor 19 4.2.1 Simulation results 19 4.2.2 Experimental results 20 4.2.3 Comparison between simulation and experimental results 21 4.3 Temperature Distribution on the Wafer in Grooved Susceptor 22 4.3.1 Simulation results 22 4.3.2 Experimental results 23 4.3.3 Comparison between simulation and experimental results 24 4.4 Comparison Between Plain and Grooved Susceptors 25 4.4.1 Temperature distribution 25 4.4.2 Wafer warpage at shutdown stage 25 4.5 Effects of Deviation of Material Property of Graphite on Simulation Results 27 5. CONCLUSIONS 29 REFERENCES 31 TABLES 34 FIGURES 42

    1. Metalorganic Vapor Phase Epitaxy, Wikipedia,
    https://en.wikipedia.org/wiki/Metalorganic_vapour_phase_epitaxy, accessed on February 16, 2016.
    2. F. H. Yang, “Modern Metal-Organic Chemical Vapor Deposition (MOCVD) Reactors and Growing Nitride-Based Materials,” Chapter 2 in Nitride Semiconductor Light-Emitting Diodes (LEDs), edited by H. C. Kuo and S. C. Shen, Woodhead Publishing, Cambridge, UK, 2014.
    3. The Concept of MOCVD Planetary Reactor, Baidu Wenku,
    http://wenku.baidu.com/view/cc3798e85ef7ba0d4a733bae.html?pn=50, accessed on March 10, 2016
    4. K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques, William Andrew, Norwich, New York, United States, 2001.
    5. G. S. Tompa, A. Colibaba-Evulet, J. D. Cuchiaro, L. G. Provost, D. Hadnagy, T. Davenport, S. Sun, F. Chu, G. Fox, and R. J. Doppelhammer, “MOCVD Process Model for Deposition of Complex Oxide Ferroelectric Thin Film,” Integrated Ferroelectric, Vol. 36, pp. 135-152, 2001.
    6. B. Mitrovic, A. Gurary, and L. Kadinski, “On the Flow Stability in Vertical Rotating Disc MOCVD Reactors under a Wide Range of Process Parameters,” Journal of Crystal Growth, Vol 287, pp 656-663, 2005.
    7. M. Dauelsberg, E. J. Thrush, B. Schineller, and J. Kaeppeler, Optoelectronic Devices: III Nitrides, Elsevier Ltd., Amsterdam, Netherlands, 2005.
    8. Faster, Better III-N Film Growth, Compound Semiconductor,
    http://www.compoundsemiconductor.net/article/91869-faster,-better-iii-n-film-growth.html, accessed on March 10, 2016.
    9. MOCVD Heater, Yuwang Group,
    http://www.yuwangcn.com/html/en/html/2015/Heaters_0415/107.html, accessed on March 10, 2016.
    10. Induction Heating Coil, Totoku,
    http://www.totoku.com/products/coils/cat2/induction-heating-coil.php, accessed on March 11, 2016.
    11. How Energy Efficient are Infrared Heaters, Buzzle,
    http://www.buzzle.com/articles/how-energy-efficient-are-infrared-heaters.html, accessed on March 15, 2016.
    12. M. Lofrano, N. Pham, M. Rosmeulen, and P. Soussan, “Stress and Wafer Warpage Analysis of GaN Thin Film Induced by Transfer Bonding Process on 200 mm Si Substrate,” in International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (Eurosime), Wroclaw, Poland, April 15-17, 2013.
    13. G. B. Stringfellow, Organometallic Vapor Phase Epitaxy: Theory and Practice, Academic Press, Waltham, USA, 1989
    14. S. G. Hu, Y. L. Hu, X. F. Wu, and Z. F. Xi, “Thermal Analysis of Susceptor with Rim Structure in MOCVD with the Chipped Infrared Heating System,” International Journal of Advancements in Computing Technology, Vol. 4, pp. 220-227, 2012.
    15. Z. M. Li, Y. Hao, L. A. Yang, S. R. Xu, Y. M. Chang, Z. W. Bi, X. W. Zhou, and J. Y. Ni, “Thermal Transportation Simulation of a Susceptor Structure with Ring Groove for the Vertical MOCVD Reactor,” Journal of Crystal Growth, Vol. 311, pp. 4679-4684, 2009.
    16. Z. M. Li, H. L. Li, J. C. Zhang, J. P. Li, H. Y. Jiang, X. Q. Fu, Y. B. Han, Y. J. Xia, Y. M. Huang, J. Q. Yin, L. J. Zhang, and S. G. Hu, “A Susceptor with Partial-Torus Groove in Vertical MOCVD Reactor by Induction Heating,” International Journal of Heat and Mass Transfer, Vol. 75, pp. 410-413, 2014.
    17. T. Nishizawa, “Vapor Phase Growth Susceptor and Vapor Phase Growth Apparatus,” US Patent, No. 2010/0282170 A1, November 12, 2009.
    18. J.-J. Hsu, “Design and Analysis of Wafer Carrier for MOCVD,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2015.
    19. A. Pramanik and L. C. Zhang, “Residual Stresses in Silicon-on-Sapphire Thin Film Systems,” International Journal of Solids and Structures, Vol. 48, pp. 1290-1300, 2011.
    20. Graphite and Carbon Manufacturer, Toyo Tanso
    http://www.toyotanso.com.tw/download_s.php?ds=14, accessed on April 14, 2016.
    21. Sapphire (Al2O3), MaTeck, http://www.mateck.de/index.php?option=com_content&view=article&id=66&Itemid=21, accessed on April 19, 2016.
    22. D. Strauch, Landolt-Börnstein – Group III Condensed Matter, Springer, Berlin, Germany, 2011.
    23. T.-L. Chou, S.-Y. Yang, and K.-N. Chiang, “Overview and Applicability of Residual Stress Estimation of Film–Substrate Structure,” Thin Solid Films, Vol. 519, pp. 7883-7894, 2011
    24. M.-T. Chen, “Numerical Simulation of the Flow, Temperature, and Solute Fields for Growing the Larger Sapphire Crystal in Czochralski System,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2014.
    25. H.-C. Chou, “The Optimization and Experiment Verification for Heating System in a Very-High Temperature MOCVD Reactor by Numerical Analysis,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2015.

    QR CODE
    :::