| 研究生: |
萬詩文 Insan Wastuwidya Mahardiani |
|---|---|
| 論文名稱: |
分析新型冠狀肺炎疫情對肺結核空間分布之影響 —以印尼日惹市為例 Analyzing the Impact of COVID-19 on the Spatial Pattern of Tuberculosis in Yogyakarta City, Indonesia |
| 指導教授: | 姜壽浩 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 結核病 、地理資訊系統 、新型冠狀肺炎 、地址對位 、群聚分析 |
| 外文關鍵詞: | Tuberculosis, GIS, COVID-19, Geocoding, Clustering Analysis |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
2018-2021年期間新型冠狀肺炎(COVID-19)的大流行對全球公共衛生系統構成了重大挑戰,同時也造成如肺結核等相關傳染防制工作的困難。特別是印尼作為肺結核高盛行的國家 。據此,COVID-19對於肺結核的傳播與分布的影響則為本研究關注的重點。本研究之目的為研究COVID-19於疫情前後在印尼日惹市結核病的空間分布型態的影響,並探討此影響與環境與社會經濟等因子之相關性。具體來說,本研究應用了地址對位(Geocoding)技術,將從印尼公共衛生局獲得之2018-2021各年之肺結核病例地址,轉換成具空間座標之資料,並使用集群分析方法(Clustering Analysis)以了解COVID-19疫情前與疫情期間之空間分布之變化。另外,本研究收集了與結核病傳播相關的七項包含了環境與社會經濟相關的重要因子進行關聯性分析。關於環境因子的收集工作,為仰賴應用遙測(Remote Sensing)技術來進行,包括土地覆蓋、建築密度、地表溫度以及植被密度;社會經濟因子的部分,主要為基於政府之統計資料,如健康設施可及性、人口密度和稅收收入等。本研究透過地理資訊系統(Geographic Information System, GIS)整合上述因子來進行空間集群分析。研究結果顯示,在群集分布的程度上,COVID-19之熱點地區集中在城市的中西部地區,在分布上於疫情前後大致相同,但上述地區於疫情期間有聚集顯著性增加的情形。另外,於疫情期間,環境和社會經濟因子與結核病聚集顯著性有不同的相關性:稅收收入和地表溫度與結核病聚集性的負相關性最大(-0.55與-0.36),而所有因子中僅有NDVI 呈較低的正相關(0.16)。研究結果顯示了利用集群分析可以有效地界定出結核病的主要聚集、具有高傳播風險的地區,且了解本研究區中COVID-19疫情是如何影響結核病之聚集分布情形,及其與環境、社經因子的關聯性。本研究相信上述成果對當地有關部門,於未來進行結核病的相關防治工作時能有相當的助益。
關鍵詞:結核病、地理資訊系統、新型冠狀肺炎、地址對位、群聚分析。
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has presented significant challenges to global public health systems, potentially impeding the progress in Tuberculosis (TB) elimination efforts. Indonesia, a country burdened with high Tuberculosis prevalence, faces additional obstacles due to the current COVID-19 situation. Hence, the impact COVID-19 pandemic on the spread of Tuberculosis becomes a noticeable issue in Indonesia. This study aims to investigate the spatial patterns of Tuberculosis before and during the COVID-19 pandemic in Yogyakarta City and to explore the relationships between selected environmental and socioeconomic factors and Tuberculosis incidence. To analyze the TB spatial pattern in the study area, the geocoding method was used to convert the text-based Tuberculosis cases, from 2018 to 2021 into geo-coordinates. This spatial dataset was then used to understand the characteristic of TB spatial patterns using cluster analysis. Also, this study uses selected critical environmental and socioeconomic factors to correlate the spatial distribution of Tuberculosis hotspots. This study considers seven factors that are known as important factors relating to the spread of Tuberculosis. They are environmental factors, including land cover, building density, land surface temperature (LST), vegetation density, and socioeconomic factors, including health facility accessibility, population density, and tax income. For the collection of the environmental factors, remote sensing techniques were employed, such as land cover classification, LST estimation, and vegetation density mapping. The results show that (1) the clustering of Tuberculosis is a common phenomenon during the study period, whether before or during the pandemic; (2) the hotspots in the city generally persisted in the center and western areas, and these areas during the pandemic showed a greater clustering significance; and (3) during the pandemic, environmental and socioeconomic has a different correlation to the Tuberculosis incidence: tax income and land surface temperature have the greater negative correlations (-0.55 and -0.36), and among all factors, only NDVI has a positive correlation (0.16). The results of this study explore the areas where the possibility of Tuberculosis transmission is higher and have a better understanding of how the COVID-19 pandemic affects the Tuberculosis spatial patterns in Yogyakarta City, which can assist the local government to have better public health policies in the Tuberculosis transmission prevention practice in the future.
Keywords: Tuberculosis, GIS, COVID-19, Geocoding, Clustering Analysis
References
[1] Alves, L. S., Dos Santos, D. T., Arcoverde, M. A. M., Berra, T. Z., Arroyo, L. H., Ramos, A. C. V., de Assis, I. S., de Queiroz, A. A. R., Alonso, J. B., Alves, J. D., Popolin, M. P., Yamamura, M., de Almeida Crispim, J., Dessunti, E. M., Palha, P. F., Chiaraval-Neto, F., Nunes, C., & Arcêncio, R. A. (2019). Detection of risk clusters for deaths due to Tuberculosis specifically in areas of southern Brazil where the disease was supposedly a non-problem. BMC Infectious Diseases, 19(1), 628. https://doi.org/10.1186/s12879-019-4263-1.
[2] Antenucci, J. C. (1991). Geographic information systems: A guide to the technology. Van Nostrand Reinhold.
[3] Auchincloss, A. H., Gebreab, S. Y., Mair, C., & Diez Roux, A. V. (2012). A review of spatial methods in epidemiology, 2000-2010. Annual Review of Public Health, 33, 107-122. https://doi.org/10.1146/annurev-publhealth-031811-124655
[4] Avdan, U., & Jovanovska, G. (2016). Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors, 2016, Article ID 1480307, 8 pages. https://doi.org/10.1155/2016/1480307.
[5] Banu, S., Rahman, M. T., Uddin, M. K. M., Khatun, R., Ahmed, T., Rahman, M. M., Husain, M. A., & van Leth, F. (2013). Epidemiology of Tuberculosis in an urban slum of Dhaka City, Bangladesh. PLoS ONE, 8(5), e0077721. https://doi.org/10.1371/journal.pone.0077721
[6] Barsi, J. A., Schott, J. R., Hook, S. J., Raqueno, N. G., Markham, B. L., & Radocinski, R. G. (2014). Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11), 11607-11626.
[7] Blount, R. J., Pascopella, L., Barry, P., Zabner, J., Stapleton, E. M., Flood, J., Balmes, J., Nahid, P., & Catanzaro, D. G. (2020). Residential urban tree canopy is associated with decreased mortality during Tuberculosis treatment in California. Science of the Total Environment, 711, 134580. https://doi.org/10.1016/j.scitotenv.2019.134580
[8] BPS-Statistic of Yogyakarta Municipality. (2020). Yogyakarta Municipality in Figures 2020. BPS-Statistic of Yogyakarta Municipality.
[9] BPS-Statistic of Yogyakarta Municipality. (2022). Yogyakarta Municipality in Figures 2022. BPS-Statistic of Yogyakarta Municipality.
[10] Bussi, C., & Gutierrez, M. G. (2019). Mycobacterium Tuberculosis infection of host cells in space and time. FEMS Microbiology Reviews, 43(4), 341-361. https://doi.org/10.1093/femsre/fuz006
[11] Cao, K., Yang, K., Wang, C., Guo, J., Tao, L., Liu, Q., Gehendra, M., Zhang, Y., & Guo, X. (2016). Spatial-Temporal Epidemiology of Tuberculosis in Mainland China: An Analysis Based on Bayesian Theory. International Journal of Environmental Research and Public Health, 13(5), 469. https://doi.org/10.3390/ijerph13050469.
[12] Caren, G. J., Iskandar, D., Pitaloka, D. A. E., Abdulah, R., & Suwantika, A. A. (2022). COVID-19 Pandemic Disruption on the Management of Tuberculosis Treatment in Indonesia. Journal of Multidisciplinary Healthcare, 15, 175-183. https://doi.org/10.2147/JMDH.S341130.
[13] Cervantes, J., Garcia-Lamont, F., Rodriguez-Mazahua, L., & Lopez, A. (2019). A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.10.118.
[14] Chan, G., Triasih, R., Nababan, B., du Cros, P., Wilks, N., Main, S., Huang, G. K. L., Lin, D., Graham, S. M., Majumdar, S. S., Bakker, M., Khan, A., Khan, F. A., & Dwihardiani, B. (2021). Adapting active case-finding for TB during the COVID-19 pandemic in Yogyakarta, Indonesia. Public Health Action, 11(2), 41-49. https://doi.org/10.5588/pha.20.0071.
[15] Chou, Y. H. (1989). Analyzing the spatial autocorrelation of polygonal data in GIS. Proceedings of Urban and Regional Information Systems Association, IV, 138–148.
[16] Cilloni, L., Fu, H., Vesga, J. F., Dowdy, D., Pretorius, C., Ahmedov, S., Nair, S. A., Mosneaga, A., Masini, E., Sahu, S., Arinaminpathy, N. (2020). The potential impact of the COVID-19 pandemic on the Tuberculosis epidemic: A modelling analysis. EClinicalMedicine, 28, 100603. https://doi.org/10.1016/j.eclinm.2020.100603
[17] Costa, F. B. P. d., Ramos, A. C. V., Berra, T. Z., Alves, Y. M., Silva, R. V. d. S., Crispim, J. d. A., Santos, M. S. d., Nanque, A. R., Teibo, T. K. A., Arcêncio, R. A. (2023). Spatial Distribution and Temporal Trend of Childhood Tuberculosis in Brazil. Tropical Medicine and Infectious Disease, 8(1), 12. https://doi.org/10.3390/tropicalmed8010012
[18] Dangisso, M. H., Datiko, D. G., Lindtjørn, B. (2015). Accessibility to Tuberculosis control services and Tuberculosis programme performance in southern Ethiopia. Global Health Action, 8, 29443. https://doi.org/10.3402/gha.v8.29443
[19] Demir, B., Erturk, S. (2009). Clustering-based extraction of border training patterns for accurate SVM classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 6(4), 840–844.
[20] Dimyati, M., Mizuno, K., Kobayashi, S., Kitamura, T. (1996). An analysis of land use/cover change using the combination of MSS Landsat and land use map—A case study in Yogyakarta, Indonesia. International Journal of Remote Sensing, 17, 931–944.
[21] Duarte, R., Lonnroth, K., Carvalho, C., Lima, F., Carvalho, A. C. C., Munoz-Torrico, M., Centris, R. (2018). Tuberculosis, Social Determinants and Co-morbidities (including HIV). Pulmonology, 24(2), 115-119. https://doi.org/10.1016/j.rppnen.2017.11.003
[22] Fernanda, F. M. C., Martins, E. S., Pedrosa, D. M. A. S., & Evangelista, M. S. N. (2016). Relationship between climatic factors and air quality with Tuberculosis in the Federal District, Brazil, 2003–2012. International Journal of Biometeorology, 60(4), 499-507. https://doi.org/10.1007/s00484-015-1057-9.
[23] Foody, G. M., & Mathur, A. (2006). The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sensing of Environment, 103(2), 179-189. https://doi.org/10.1016/j.rse.2006.04.001.
[24] Foody, G. M., & Mathur, A. (2006). The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sensing of Environment, 103(2), 179-189. https://doi.org/10.1016/j.rse.2006.04.001.
[25] Gao, C., Wang, Y., Hu, Z., Jiao, H., & Wang, L. (2022). Study on the Associations between Meteorological Factors and the Incidence of Pulmonary Tuberculosis in Xinjiang, China. Atmosphere, 13(4), 533. https://doi.org/10.3390/atmos13040533.
[26] Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, 24, 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x.
[27] Griffith, D. A. (2009). Spatial Autocorrelation. In R. Kitchin & N. Thrift (Eds.), International Encyclopedia of Human Geography (pp. 308-316). Elsevier. https://doi.org/10.1016/B978-008044910-4.00522-8.
[28] Harling, G., & Castro, M. C. (2014). A spatial analysis of social and economic determinants of Tuberculosis in Brazil. Health & Place, 25, 56-67.
[29] Helmy, H., Kamaluddin, M. T., Iskandar, I., & Suheryanto. (2022). Investigating Spatial Patterns of Pulmonary Tuberculosis and Main Related Factors in Bandar Lampung, Indonesia Using Geographically Weighted Poisson Regression. Tropical Medicine and Infectious Disease, 7(9), 212. https://doi.org/10.3390/tropicalmed7090212.
[30] Huxhold, W. E. (1991). An introduction to geographic information systems. Oxford University Press.
[31] Jensen, J. R. (1996). Introductory Digital Image Processing: A Remote Sensing Perspective (2nd ed.). Prentice Hall, Inc.
[32] Jia, Z. W., Jia, X. W., Liu, Y. X., Dye, C., Chen, F., Chen, C. S., Zhang, W.-Y., Li, X.-W., Cao, W.-C., & Liu, H. L. (2008). Spatial analysis of Tuberculosis cases in migrants and permanent residents, Beijing, 2000–2006. Emerging Infectious Diseases, 14(9), 1413.
[33] Kerubo, G., Amukoye, E., Niemann, S., & Kariuki, S. (2016). Drug susceptibility profiles of pulmonary Mycobacterium Tuberculosis isolates from patients in informal urban settlements in Nairobi, Kenya. BMC Infectious Diseases, 16, 583.
[34] Kiani, B., Raouf Rahmati, A., Bergquist, R., Hashtarkhani, S., Firouraghi, N., Bagheri, N., Moghaddas, E., & Mohammadi, A. (2021). Spatio-temporal epidemiology of the Tuberculosis incidence rate in Iran 2008 to 2018. BMC Public Health, 21(1), 1093.
[35] Kwak, N., Hwang, S. S., & Yim, J. J. (2020). Effect of COVID-19 on Tuberculosis Notification, South Korea. Emerging Infectious Diseases, 26(10), 2506-2508.
[36] Lai, P. C., Low, C. T., Tse, W. S., Tsui, C. K., Lee, H., & Hui, P. K. (2013). Risk of Tuberculosis in high-rise and high density dwellings: An exploratory spatial analysis. Environmental Pollution, 183, 40-45.
[37] Li, X. X., Ren, Z. P., Wang, L. X., Zhang, H., Jiang, S. W., Chen, J. X., et al. (2016). Co-endemicity of Pulmonary Tuberculosis and Intestinal Helminth Infection in the People’s Republic of China. PLoS Neglected Tropical Diseases, 10(4), e0004580.
[38] Lin, E. C., Tu, H. P., & Hong, C. H. (2023). Limited effect of reducing pulmonary Tuberculosis incidence amid mandatory facial masking for COVID-19. Respiratory Research, 24, 54. https://doi.org/10.1186/s12931-023-02365-x.
[39] Liu, M. Y., Li, Q. H., Zhang, Y. J., Ma, Y., Liu, Y., Feng, W., ... Guo, X. H. (2018). Spatial and temporal clustering analysis of Tuberculosis in the mainland of China at the prefecture level, 2005-2015. Infectious Diseases of Poverty, 7(1), 106. https://doi.org/10.1186/s40249-018-0490-8.
[40] Liu, Q., Sha, D., Liu, W., Houser, P., Zhang, L., Hou, R., ... Yang, C. (2020). Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in Mainland China Using Nighttime Light and Air Quality Data. Remote Sensing, 12, 1576. https://doi.org/10.3390/rs12101576.
[41] Liu, Z. Y. C., Chamberlin, A. J., Tallam, K., Jones, I. J., Lamore, L. L., Bauer, J., ... De Leo, G. A. (2022). Deep Learning Segmentation of Satellite Imagery Identifies Aquatic Vegetation Associated with Snail Intermediate Hosts of Schistosomiasis in Senegal, Africa. Remote Sensing, 14(6), 1345. https://doi.org/10.3390/rs14061345.
[42] Longley, P. (2005). Geographic information systems and science. John Wiley & Sons.
[43] Mackenzie, J. S., & Smith, D. W. (2020). COVID-19: A novel zoonotic disease caused by a coronavirus from China: What we know and what we don't. Microbiology Australia. Advance online publication. https://doi.org/10.1071/MA20013.
[44] Mahara, G., Yang, K., Chen, S., Wang, W., & Guo, X. (2018). Socio-Economic Predictors and Distribution of Tuberculosis Incidence in Beijing, China: A Study Using a Combination of Spatial Statistics and GIS Technology. Medical Sciences, 6, 26. https://doi.org/10.3390/medsci6020026.
[45] Masina, H. V., Lin, I. F., & Chien, L. Y. (2022). The Impact of the COVID-19 Pandemic on Tuberculosis Case Notification and Treatment Outcomes in Eswatini. International Journal of Public Health, 67, 1605225. https://doi.org/10.3389/ijph.2022.1605225.
[46] Mollalo, A., Mao, L., Rashidi, P., & Glass, G. E. (2019). A GIS-Based Artificial Neural Network Model for Spatial Distribution of Tuberculosis across the Continental United States. International Journal of Environmental Research and Public Health, 16(1), 157. https://doi.org/10.3390/ijerph16010157.
[47] Mooi, E., & Sarstedt, M. (2011). Chapter 9: Cluster Analysis. In E. Mooi & M. Sarstedt (Eds.), A Concise Guide to Market Research (pp. 273-324). Springer-Verlag.
[48] Mountrakis, G., Im, J., & Ogole, C. (2011). Support Vector Machines in Remote Sensing: A Review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001.
[49] Narasimhan, P., Wood, J., MacIntyre, C. R., & Mathai, D. (2013). Risk Factors for Tuberculosis. Pulmonary Medicine, 2013, Article ID 828939. http://dx.doi.org/10.1155/2013/828939.
[50] Neinavaz, E., Darvishzadeh, R., Skidmore, A. K., & Abdullah, H. (2019). Integration of Landsat-8 Thermal and Visible-Short Wave Infrared Data for Improving Prediction Accuracy of Forest Leaf Area Index. Remote Sensing, 11(4), 390. https://doi.org/10.3390/rs11040390.
[51] Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied Linear Statistical Models (4th ed.). WCB McGraw-Hill.
[52] Niedertscheider, M., & Erb, K. (2014). Land System Change in Italy from 1884 to 2007: Analysing the North-South Divergence on the Bases of an Integrated Indicator Network. Land Use Policy, 39, 366–375. http://dx.doi.org/10.1016/j.landusepol.2014.01.015.
[53] Nuraini, N., Fauzi, I. S., Lestari, B. W., & Rizqina, S. (2022). The Impact of COVID-19 Quarantine on Tuberculosis and Diabetes Mellitus Cases: A Modelling Study. Tropical Medicine and Infectious Disease, 7, 407. https://doi.org/10.3390/tropicalmed7120407.
[54] Ogbudebe, C. L., Chukwu, J. N., Nwafor, C. C., Meka, A. O., Ekeke, N., Madichie, N. O., ... Ukwaja, K. N. (2015). Reaching the underserved: Active Tuberculosis case finding in urban slums in southeastern Nigeria. International Journal of Mycobacteriology, 4, 18–24.
[55] Oppong, J. R., Mayer, J., & Oren, E. (2015). The global health threat of African urban slums: The example of urban Tuberculosis. African Geographical Review, 34, 182–195.
[56] Qiu, J., Han, D., Li, R., Xiao, Y., Zhu, H., Xia, J., ... Li, X. (2022). Satellite Imagery-Based Identification of High-Risk Areas of Schistosome Intermediate Snail Hosts Spread after Flood. Remote Sensing, 14(15), 3707. https://doi.org/10.3390/rs14153707.
[57] Quaife, M., van Zandvoort, K., Gimma, A., et al. (2020). The impact of COVID-19 control measures on social contacts and transmission in Kenyan informal settlements. BMC Medicine, 18, 316. https://doi.org/10.1186/s12916-020-01779-4.
[58] Rai, B., Dixit, K., Prasad Aryal, T., Mishra, G., Teixeira de Siqueira-Filha, N., Paudel, P. R., ... Wingfield, T. (2020). Developing Feasible, Locally Appropriate Socioeconomic Support for TB-Affected Households in Nepal. Tropical Medicine and Infectious Disease, 5(2), 98. https://doi.org/10.3390/tropicalmed5020098.
[59] Rinawati, S. A. W., Reviono, Sumardiyono, & Harsini. (2023). The complexity of treatment discontinuation behavior in Drug-Resistant Tuberculosis (DR-TB) patients during Covid-19 pandemic era: A qualitative study in the special region of Yogyakarta. International Conference on Health Sciences, 9(1), 1–09. https://doi.org/10.29238/ichs.v9i1.1644.
[60] Rodriguez-Galiano, V. F., & Chica-Riva, M. (2014). Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models. International Journal of Digital Earth, 7(6), 492-509. doi: 10.1080/17538947.2012.748848.
[61] Rogan, J., Franklin, J., Stow, D. A., & Miller, J. (2008). Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sensing of Environment, 112, 2272-2283. https://doi.org/10.1016/j.rse.2007.10.004.
[62] Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. International Journal of Geosciences, 8, 611-622. https://doi.org/10.4236/ijg.2017.84033.
[63] Shaweno, D., Karmakar, M., Alene, K. A., et al. (2018). Methods used in the spatial analysis of Tuberculosis epidemiology: A systematic review. BMC Medicine, 16, 193. https://doi.org/10.1186/s12916-018-1178-4.
[64] Stomph, T. J., Fresco, L. O., & van Keulen, H. (1994). Land use system evaluation: Concepts and methodology. Agriculture, Ecosystems & Environment, 44(3), 243–255. https://doi.org/10.1016/0308-521x(94)90222-2.
[65] Sun, W., Gong, J., Chen, S., Zhou, J., Zhao, Y., Tan, J., Ibrahim, A. N., & Zhou, Y. (2015). A Spatial, Social and Environmental Study of Tuberculosis in China Using Statistical and GIS Technology. International Journal of Environmental Research and Public Health, 12, 1425-1448. https://doi.org/10.3390/ijerph120201425.
[66] Tadesse, S., Enqueselassie, F., & Hagos, S. (2018). Spatial and space-time clustering of Tuberculosis in Gurage Zone, Southern Ethiopia. PLoS ONE, 13(6), e0198353. https://doi.org/10.1371/journal.pone.0198353.
[67] Tang, N., Yuan, M., Chen, Z., Ma, J., Sun, R., Yang, Y., ... Zhou, J. (2023). Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants. International Journal of Environmental Research and Public Health, 20(5), 3910. https://doi.org/10.3390/ijerph20053910.
[68] TB Indonesia. (2021). Dashboard TB. https://tbindonesia.or.id/pustaka-tbc/dashboard-tb/ (Accessed on 25 July 2021).
[69] Tovar, M., Aleta, A., Sanz, J., et al. (2022). Modeling the impact of COVID-19 on future Tuberculosis burden. Communications Medicine, 2, 77. https://doi.org/10.1038/s43856-022-00145-0.
[70] Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O., Dazlich, D. A., & Randall, D. A. (1994). A global 1 × 1 NDVI dataset for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI. International Journal of Remote Sensing, 15, 3519-3545.
[71] Vapnik, V. (1979). Estimation of Dependences Based on Empirical Data. Nauka, Moscow, pp. 5165–5184, 27 (in Russian) (English translation: Springer Verlag, New York, 1982).
[72] Wacano, D., Latifah, N. D., Bishop, H., Gutama, H., Hasanah, N. A. I., Yulianto, A., ... Asmara, A. A. (2021). Landscapes Vulnerability on Climate Change in Yogyakarta Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 933, 012023. https://doi.org/10.1088/1755-1315/933/1/012023.
[73] Wanyeki, I., Olson, S., Brassard, P., Menzies, D., Ross, N., Behr, M., & Schwartzman, K. (2006). Dwellings, crowding, and Tuberculosis in Montreal. Social Science & Medicine, 63(2), 501-511. doi: 10.1016/j.socscimed.2005.12.015.
[74] Weng, Q. H., Lu, D. S., & Schubring, J. (2004). Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483.
[75] World Health Organization (WHO). (2020). Tuberculosis.
[76] World Health Organization (WHO). (2021). Global Tuberculosis Report 2021.
[77] World Health Organization (WHO). (2022). Global Tuberculosis Report 2022.
[78] Xu, H.-Q., & Chen, B.-Q. (2004). Remote sensing of the urban heat island and its changes in Xiamen City of SE China. Journal of Environmental Sciences, 16(2), 276-281.
[79] Xu, M., Li, Y., Liu, B., Chen, R., Sheng, L., Yan, S., ... Hu, P. (2020). Temperature and humidity associated with increases in Tuberculosis notifications: A time-series study in Hong Kong. Epidemiology and Infection, 149, e8. doi: 10.1017/S0950268820003040.
[80] Xue, J., Hu, X., Hao, Y., Gong, Y., Wang, X., Huang, L., ... Xia, S. (2022). Transmission Risk Predicting for Schistosomiasis in Mainland China by Exploring Ensemble Ecological Niche Modeling. Tropical Medicine and Infectious Disease, 8(1), 24. doi: 10.3390/tropicalmed8010024.
[81] Yang, D-l., Li, W., Pan, M-h., Su, H-x., Li, Y-n., Tang, M-y., ... (2022). Spatial Analysis And Influencing Factors Of Pulmonary Tuberculosis Among Students In Nanning, During 2012–2018. PLoS ONE, 17(5), e0268472. https://doi.org/10.1371/journal.pone.0268472.
[82] Yang, J., Kwon, Y., Kim, J., Jang, Y., Han, J., Kim, D., ... Shim, E. (2021). Delays in the diagnosis and treatment of Tuberculosis during the COVID-19 outbreak in the Republic of Korea in 2020. Osong Public Health Research Perspectives, 12(5), 293-303. doi: 10.24171/j.phrp.2021.0063.