| 研究生: |
陳馨媛 Hsin-Yuan Chen |
|---|---|
| 論文名稱: |
具銻砷化銦鎵基極之異質接面雙極性電晶體特性與材料分析 characterization and Analysis of InGaASb Base Heterojunction Bipolar Transistors |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 應變 、銻砷化銦鎵 、活化能 |
| 外文關鍵詞: | InGaAsSb, HBT, strain, Activation energy |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究內容在於磷化銦/銻砷化銦鎵/砷化銦鎵(InP/InxGa1-xAs1-ySby/In0.53Ga0.47As)雙異質接面雙極性電晶體直流特性與基極材料的分析。在材料分析方面,運用固態源分子束磊晶法(solid-source molecular beam epitaxy)成長不同銻元素莫耳濃度之銻砷化銦鎵塊材於磷化銦基板上,並利用高解析度X-光繞射儀、光激發光譜儀、霍爾效應(Hall)等量測儀器分析此四元材料特性,探討銻砷化銦鎵作為異質接面雙極性電晶體之基極材料時,對其直流特性的影響。
以InP/In0.37Ga0.63As0.88Sb0.12/In0.53Ga0.47As雙異質接面雙極性電晶體為例,其元件的順向導通電壓為0.35 V相較於InP/In0.53Ga0.47As單異質接面雙極性電晶體之 0.5 V有較低的順向導通電壓。由Gummel plot之變溫量測結果所得到電晶體的能帶結構以及藉由分析銻砷化銦鎵塊材內部之應變勢能(Strain)可知,此低順向導通電壓特性係來自於In0.37Ga0.63As0.88Sb0.12之基極能隙(0.635 eV)較砷化銦鎵的能隙(0.75 eV)窄,且其射極/基極接面之導電帶不連續(0.13 eV)亦較原0.25 eV為小。此射極/基極接面結構亦改善了元件之電流增益,特別在於低電流區域。此研究顯示此新型之雙異質接面雙極性電晶體極適合低功率與高速電路之應用。
This thesis reports the characterization of InxGa1-xAs1-ySby epilayers and InP/InxGa1-xAs1-ySby/InGaAs double heterojunction bipolar transistors (DHBTs) grown on InP by solid-source molecular beam Epitaxy. InxGa1-xAs1-ySby bulk layers of difference Sb content are prepared and characterized by high resolution X-ray diffraction, photoluminescence and Hall measurements so as to examine their electronic, electrical as well as structural properties.
As to the InP/In0.37Ga0.63As0.88Sb0.12/In0.53Ga0.47As DHBTs, low forward turn-on voltages as low as 0.35 V are obtained. Such a low turn-on voltage is much lower than the 0.5 V for conventional InP/In0.53Ga0.47As HBTs. Through temperature-dependent Gummel plots, photoluminescence and x-ray diffraction, the reduced turn-on voltage is attributed to the small energy band gap of InxGa1-xAs1-ySby base, the reduced conduction band offset of emitter/base junction and the residual tensile strain in the base. In addition, the current gain is also improved by the resultant emitter/base type-I band line-up, especially at the low current region. The work shows the great potential of InxGa1-xAs1-ySby DHBTs for low-power, high-speed circuit applications.
[1]M Levinshtein, S Rumyantsev, “Handbook Series on Semiconductor Parameters”, World Scientific.
[2]Kyurhee Shim, et al., “Band gap and lattice constant of GaxIn1-xAsySb1-y”, J. Appl. Phys., Vol. 88, No. 12, December 2000.
[3]I. Vurgaftman, et al., “Band parameters for III-V compound semiconductors and their alloys”, J. Appl. Phys., Vol. 89, No. 11, June 2001.
[4]J. R. Chang, et al., “Determination of the valence-band offset for GaInAsSb/InP heterostructure”, Appl. Phys. Lett., Vol. 74, No. 5, February 1999.
[5]K. Y. Cheng, et al., “Ultra-High Speed Composition Graded InGaAsSb/GaAsSb DHBTs with fT = 500 GHz Grown by Gas-Source Molecular Beam Epitaxy”, IPRM, pages: 89-91, 2006.
[6]M. Peter, et al., “ band gaps and band offsets in strained GaAs1-ySby on InP grown by metalorganic chemical vapor deposition” Appl. Phys. Lett., Vol. 74, No. 3, January 1999.
[7]M. Leibovitch, et al., “Determining band offsets using surface photovoltage spectroscopy: The InP/In0.53Ga0.47As heterojunction”, Appl. Phys. Lett., Vol. 69, page:2587, October 1996.
[8]K.Y. Cheng, et al., “High-speed InGaAsSb/InP double heterojunction bipolar transistor with composition graded base and InAs emitter contact layers” J. Crystal Growth, 301, page: 1005-1008, 2007.
[9]O.J. Pitts, et al., “Antimony segregation in GaAs-based multiple quantum well structures”, J. Crystal Growth, 254, page: 28–34, 2003.
[10]V.S. Sorokin, et al., “Novel approach to the calculation of instability regions in GaInAsSb alloys”, J. Crystal Growth, 216, 97-103, 2000.
[11]N. Otsuka, et al., “Molecular beam epitaxial growth and low-temperature optical characterization of GaAs0.5Sb0.5 on InP”, Appl. Phys. Lett., 50, 11, May 1987.
[12]B. T. McDermott, et al., “Growth and doping of GaAsSb via metalorganic chemical vapor deposition for InP heterojunction bipolar transistors”, Appl. Phys. Lett., 68 (10), 4 March 1996.
[13]Moonjung Kim, et al., “InP/InGaAs heterojunction bipolar transistors with low-resistance contact on heavily doped InP emitter layer”, Appl. Phys. Lett., Vol. 84, No. 15, April 2004.
[14]C. R. Bolognesi, et al., “Non-Blocking Collector InP/GaAs0.51Sb0.49/InP Double Heterojunction Bipolar Transistors with a Staggered Lineup Base–Collector Junction”, IEEE Electron Device Lett., Vol. 20, No. 4, April 1999.
[15]Yasuhiro Oda, et al., “Improvement of current gain of C-doped GaAsSb-base heterojunction bipolar transistors by using an InAlP emitter” ,Appl. Phys. Lett., Vol. 87, page: 023503, 2005.
[16]Takashi Kobayashi, et al., “Improvement of current gain of C-doped GaAsSb-base heterojunction bipolar transistors by using an InAlP emitter”, Appl. Phys. Lett., Vol. 87, 023503, 2005.
[17]S. W. Cho, et al., “High performance InP/InAlAs/GaAsSb/InP double heterojunction bipolar transistors”, Solid-State Electron., 50, page: 902-907, 2006.
[18]S. M. Sze, “Semiconductor Device Physics and Technology”, 2nd Edition, John Wiley and Sons, Inc.
[19]Hong Wang, et al., “Electrical Properties and Transport Mechanisms of InP/InGaAs HBTs Operated at Low Temperature”, IEEE Transactions on Electron Devices, Vol. 48, No. 8, August 2001.
[20]Masatomo Fujimoto, “Effect of Hot-Electron Injection of High-Frequency Characteristics of Abrupt In0.52(Gal - xA1x)0.48As/ InGaAs HBT’s”, IEEE Transactions on Electron Devices, Vol. 39, No. 3, March 1992.
[21]S. L. Chuang, et al., “Theory and Experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs Long-Wavelength Strained Quantum-Well Lasers”, IEEE Journal of Quantum Electronics, Vol. 35, No. 5, May 1999.