跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭毓娟
Yu-Jung Guo
論文名稱: 雙線性系統之控制設計
Stabilizing Controllers for Bilinear System
指導教授: 黃衍任
Yean-Ren Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 83
中文關鍵詞: 雙線性系統控制器設計漸進穩定指數穩定
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究對於連續雙線性系統的控制器設計。我們提出的控制器設計分成兩大類來討論:第一類是GSAS控制,在我們的設計下,雙線性系統透過此類控制可以達到漸進穩定;第二類是指數控制,透過此類的控制雙線性系統可以達到指數穩定。而這兩類的控制器我們分別以非連續性、連續性、平滑性三種控制形態來討論。


    Content Figure List……………………………………………………………. ...V Abstract……………………………………………………………………VII 1 Introduction………………………………………………………………1 2 The Reachability of Dyadic Bilinear Systems………………………3 2.1 The Concerned system…………………………………………………4 2.2 The Reachability of Dyadic Bilinear Systems……………………5 2.2.1 Introduction……………………………………………………...5 2.2.2 Preliminaries………………………………………………….…6 2.2.3 Reachability of Dyadic Bilinear Systems……………………9 2.2.4 Conclusion…………………………………………………….13 3 GSAS Control Laws……………………………………………………..14 3.1 Discontinuously GSAS Control.…………..……………………..14 3.1.1 Control Law…………………………………………………..…14 3.1.2 Stability Analysis……………………………………………15 3.1.3 Example Simulation………………………..…………………19 3.2 Continuously GSAS Control….……………………………..………21 3.2.1 Control Law…………………………………..………………..21 3.2.2 Stability Analysis……………………………………………..21 3.2.3 Example Simulation……………………………..…………..26 3.3 Smoothly GSAS Control.…………………...…………….…………28 3.3.1 Control Law………………………………………………..……28 3.3.2 Stability Analysis…………….………………………………28 3.3.3 Example Simulation……………………………….………….30 4 Exponential Control Laws………………………………………..….32 4.1 Discontinuously Exponential Control...……...…………..…32 4.1.1 Control Law………………………………………..…………..32 4.1.2 Stability Analysis…………………………...……………….33 4.1.3 Example Simulation……………………………………...…….38 4.2 Continuously Exponential Control….…………………….…....40 4.2.1 Control Law…………………………………………..……..40 4.2.2 Stability Analysis……………………..………………….….40 4.2.3 Example Simulation…………………………………………..42 4.3 Smoothly Exponential Control...……………..….…………...44 4.3.1 Control Law………………………………………………..…..44 4.3.2 Stability Analysis………………………………………………45 4.3.3 Example Simulation………………………..……………………47 5 Conclusion…………………………………………………..…………..49 Simulation Results……………………………………..…………………50 Reference……………………………………………..…………………..83

    [1] R.R. Mohler and C. N. Shen, {it Optimal control of Nuclear Reactors}. New York: Academic, 1970.
    [2] R.R. Mohler, {it Biliner Control Processes}. New York: Academic, 1973.
    [3] R.R. Mohler, and P.A. Frick, "Bilinear demographic control
    processes", {it Int. J. Policy Analysis Inform. Syst.}, vol. 2, pp. 57-70, 1979.
    [4] C. Bruni, G. Di Pillo, and G. Koch, "Bilinear systems: An appealing class of nearly linear systems in theory and
    applications", {it IEEE Trans. Automat. Contr.}, vol. AC-19, pp. 334-348, 1974.
    [5] R.R. Mohler and W.J. Kolodziej, "An overview of bilinear system theory and applications", {it IEEE Trans. Syst., Man ,
    Cybern}, vol. SMC-10, pp. 683-688, 1980.
    [6] R.W. Brockett, "On the algebraic structure of bilinear systems", in {it Theory and Applications of Variable Structure
    Systems }, R.R. Mohler and A.Ruberti, Eds. New York: Academic, pp. 156-168 , 1972.
    [7] O.M. Grasselli and S. Longhi, "On the stabilization of a class of bilinear systems", {it Int. J. Contr.}, vol. 37 , pp.
    413-420, 1983.
    [8] A.V. Balakrishnan, "Modeling and identification theory: a flight control application", in {it Theory and
    Applications of Variable Structure Systems}, R.R. Mohler and A. Ruberti, Eds. New York: Academic, pp. 1-24, 1972.
    [9] R.R. Mohler, C.F. Barton, and C.S. Hsu, "T and B Cell Models
    in the immune system", in {it Theoretical Immunology}, G. Bell {it et al.}, Eds. New York : Marcel Dekker, 1978, pp.
    415-436, 1976.
    [10] R.R. Mohler, C.F. Barton, " Compartmental control model of the immune process", {it Proc. 8th IFIP Optimization Conf.},
    New York: Springer, 1977.
    [11] R. R. Mohler, C.S. Hsu, "Systems compartmentation in immunological modeling", {it Proc. Rome Workshop on Immune
    Systems}, New York: Springer, 1979.
    [12] D.L. Elliott, "Mathematical models of
    blood coagulation kinetics", in {it Recent Developments in Variable Structure System, Economics and Biology}, R.R. Mohler and
    A. Ruberti, Eds. New York: Springer, pp. 118-122, 1978.
    [13] M. Espana and I.D. Landau, "Reduced order bilinear models for
    distillation columns", {it Automatica}, vol. 14, pp. 345-357, 1978.
    [14] M.Slemrod, "Stabilization of bilinear control systems with application to nonconservative problems in elasticity", {it
    SIAM J. Contr. Optim.}, vol. 16, pp. 131-141, 1978.
    [15] A.J. Krener, "Bilinear and nonlinear realizations of input/output maps", {it SIAM J. Contr.}, vol. 13, pp. 827-834,
    1975.
    [16] H.J. Sussman, "Semigroup representations, bilinear approximation of input-output maps and generalized inputs ", in {it
    Mathematical Systems Theory} G. Marchesini and S.K. Miiter, Eds., New York: Springer, 1976.
    [17] V.I. Buyakas, {it Automn. remote Control}, vol. 27, pp. 193-, 1979.
    [18] S.F. Moon and R.R. Mohler, Bur. of Eng. R., Univ. New Mexico, Albuquerque, Tech. Rep. EE-164, 1969.
    [19] T. Ionescu and R.V. Monopoli, "On the stabilization of bilinear system via hyperstability", {it IEEE Trans. Automat.
    Contr. }, vol. AC-20, pp. 280-284, 1975.
    [20] E.P. Rayn and N.J. Buckingham, "On asymptotically stabilizing feedback control of bilinear systems", {it IEEE Trans.
    Automat. Contr.}, vol. AC-28, pp. 863-864, 1983.
    [21] M. Slemrod, {it SIAM J. Control and Optimization}, vol.16, pp.131-,
    1978.
    [22] J.P. Gauthier and G. Bornard, "Stabilization of bilinear systems, performance specification and optimality", in
    {it Proc. 4th Int. Conf. Anal. and Optimiz.}, Versailles, France, 1980.
    [23] R. Longchamp, "Controller design for bilinear
    systems", {it IEEE Trans. Automat. Contr.}, vol. AC-25, pp. 547-548, 1980.
    [24] I. Derese and E. Noldus, "Design of linear
    feedback laws for bilinear systems ", {it Int. J. Contr.}, vol. 31, pp. 219-237, 1980.
    [25] R. Genesio and A. Tesi, "On the feedback of SISO bilinear systems", Tech. Rep. DSI 9/86, Univ. Florence, Italy, 1986;
    also in {it Int. J. Contr.}, to be published.
    [26] R. V. Monopoli, "Synthesis techniques employing the direct method",
    {it IEEE Trans. Automat. Contr.(Correspondence)}, July, pp.369-370, 1965.
    [27] H.C. Lu and C.A. Wey, "Lyapunov stability of
    bilinear time-Delay systems", {it Proc. 32th Conf. Decision and Control}, San Antonio, Texas, 1993.
    [28] R. Genesio and A.
    Tesi, "The output stabilization of SISO bilinear systems", {it IEEE Trans. Automat. Contr.}, vol. AC-33, pp. 950-952, 1988.
    [29] X. Yang, L.K. Chen, and R.M. Burton, "Stability of bilinear systems with output feedback", {it Int. J. Contr.}, vol. 50,
    no. 5, pp. 2085-2092, 1989.
    [30] P.O. Gutman, "Stabilizing controllers for bilinear systems", {it IEEE Trans. Automat.
    Contr.}, vol. AC-26, no. 4, pp. 917-922, 1981.
    [31] Y.R. Hwang, "Reachability of Dyadic Bilinear Systems".
    [32] M. Vidysagar, "Nonlinear System Analysis", second edition, Prentice Hall, Englewood Cliffs, New Jersey, 1993.
    [33] A. Isidori, "Nonlinear Control Systems: An Introduction",
    Springer-Verlag, New York, 1985.
    [34] H. Nijmeijer, "Nonlinear Dynamical Control", Springer-Verlag, New York, 1990
    [35] R. Hermann, and A.J. Krener, "Nonlinear Controllability and Observability", IEEE Transactions on Automatic Control,
    728-740, Vol AC-22, No.5, October 1977.
    [36] R.R. Mohler, "Nonlinear Systems, Volume II, Applications to Bilinear Control", Prentice Hall, Englewood Cliffs, New
    Jersey, 1.
    [37] W.Hahn, "Stability of Motion", Springer Verlarg, 1967.

    QR CODE
    :::