跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戴嘉信
Chia-Hsin Tai
論文名稱: 懸浮結構之模擬與製作
Simulation and Fabrication of a Overhanging Microstructure
指導教授: 黃豐元
Fuang-Yuan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 61
中文關鍵詞: 摻雜氮的矽化鈷薄膜選擇性鎢沉積數位微鏡面裝置微機電
外文關鍵詞: selective tungsten chemical vapor deposition, MEMS, Micro Electro Mechanical Systems, DMD
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著市場對大尺寸顯示器的需求越來越大,投影顯示的技術進步神速,其中以德州儀器所研發出來的數位光源處理系統有著體積小、重量輕、反應快、影像品質細膩等優勢,迅速在各種顯示技術中脫穎而出。
    而數位光源處理器的核心裝置是一組由微鏡面所組成之陣列,稱為數位微鏡面陣列,其驅動方式是藉由靜電力造成微機電致動器進行轉動,進而帶動微鏡面形成傾斜角度藉以反射光源進行投影。
    本論文選擇摻雜氮之矽化鈷薄膜此一複合材料,當作微致動器之鉸鏈材料,藉由微機電模擬軟體Intellisiute進行在不同幾何結構與懸浮高度下驅動電壓與旋轉角度之模擬。可以得到當懸浮高度2μm、鉸鏈寬度2μm時有較佳的結果,並且得知薄膜內應力大小對驅動電壓與轉動角度的關係沒有影響。另外發現ㄒ型的支撐柱結構可以用來改變驅動電壓與轉動角度的關係而不需要改變鉸鏈結構。
    模擬完成後,根據結果去設計光罩,然後進行實際元件製作。最後對製作過程所遇到之困難進行討論,並成功製作出以多晶矽為鉸鏈材料之懸浮結構。


    總 目 錄 摘要………………………………………………………………… I 總目錄……………………………………………………………… II 表目錄……………………………………………………………… IV 圖目錄……………………………………………………………… V 第一章 緒論………………………………………………… 1 1. 1 前言………………………………………………… 1 1. 2 數位微鏡面裝置(DMD)………………………… 3 1. 3 研究動機與目的…………………………………… 6 第二章 實驗方法與原理…………………………………… 9 2. 1 微致動器結構模擬………………………………… 9 2. 2 利用W-CVD製作導電支撐柱…………………… 15 2. 3 微致動器製作……………………………………… 20 2. 3. 1 實驗儀器簡介……………………………………… 20 2. 3. 2 微致動器結構與製作流程………………………… 23 2. 3. 3 實驗步驟參數設計………………………………… 32 第三章 結果與討論………………………………………… 38 3. 1 微致動器模擬結果………………………………… 38 3. 2 W-CVD沈積結果…………………………………… 46 3. 3 微致動器製作結果………………………………… 50 3. 3. 1 氧化矽蝕刻深度測試……………………………… 50 3. 3. 2 氫氟酸對金屬鎢的蝕刻…………………………… 52 3. 3. 3 薄膜熱應力………………………………………… 52 3. 3. 4 多晶矽之懸浮結構………………………………… 54 第四章 結論………………………………………………… 56 參考文獻 ……………………………………………………… 58

    [1]Richard Gale, “Principles and applications of the digital micromirror device in projection displays”, Lasers and Electro-Optics Society 1999 12th Annual Meeting. LEOS ’99. IEEE, Vol. 1, pp.212-213, 1999.
    [2]R.J.T. Bunyan, D.O. King, R.A. Wilson, and A.M. Scott, “Design, modeling and evaluation of micromirrors”, Microengineering, Modelling and Design (Ref. No. 1999/052), IEE Seminar on, pp.3/1-3/3, 1999.
    [3]Jinghong Chen and Sung-Mo(Steve) Kang, “Dynamic Macromodeling of MEMS Mirror Device”, pp.925-928, IEDM 2001.
    [4]Johannes Buhler, Jorg Funk, Jan G. Korvink, Franz-Peter Steiner, Pasqualina M. Sarro, and Henry Baltes, “Electrostatic Aluminum Micromirrors Using Double-Pass Metallization”, Journal of Microelectromechanical System, Vol. 6, No. 2, pp.126-135, June 1997.
    [5]M.R. Douglass, “Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device (DMD)”, Reliability Physics Symposium Proceedings, 1998, 36th Annual . 1998, IEEE International, pp.9-16, 31 March-2 April 1998.
    [6]Andrew B. Sontheimer, “Digital Micromirror Device (DMD) hinge memory lifetime reliability modeling”, Reliability Physics Symposium Proceedings, 2002, 40th Annual, IEEE International, pp.118-121, 2002.
    [7]Sang-Ho Lee, Myong-John Kwon, Jin-Goo Park, Yong-Kweon Kim, and Hyung-Jae Shin, “The Vapor Phase Deposition of Fluorocarbon Films for the Prevention of in-use Stiction in Micromirrors”, International Microprocesses and Nanotechnology Conference (MNC) , pp.172-173, 13-16 July 1998.
    [8]J. M. Younse, “Mirrors on a chip”, IEEE Spectrum, pp.27-31, 1993.
    [9]S. Kurth, R. Hahn, C. Kanfmann, K/ Kehr, J. Mehner, V. Wollmann, W. Dotzel, T. Gessner, “Silicon mirrors and micromirror arrays for spatial laser beam modulation”, Sensors and Actuators A, Vol. 66, pp.76-82, 1998.
    [10]H. Toshiyoshi, H. Fujita, “Electrostatic microtorsion mirrors for an optical switch matrix”, Journal of Microelectromechanical System, Vol. 5, No. 4, pp.231-237, 1996.
    [11]S. Kurth and W. Dotzel, “Experimental adaption of model parameters for Microelectromechanical systems (MEMS)”, Sensors and Actuators A, Vol. 62, pp.760-764, 1997.
    [12]Seok-Whan Chung, Jong-Woo Shin, Yong-Kweon Kim, and Bong-Soo Han, “Design and fabrication of micromirror supported by electroplated nickel posts”, Sensors and Actuators A, Vol. 54, pp.464-467, 1996.
    [13]陳勇志, “Study on the Etching Characteristics of Nitrogen-Doped Cobalt Silicide film”, 國立中興大學九十一學年度碩士論文.
    [14]蕭鉉樺, “Effect of Nitrogen Doping on the Properties of Cobalt Silicide film”, 國立中興大學九十一學年度碩士論文.
    [15]莊達人, VLSI製造技術 ; 高立出版社, p219.
    [16]Marc Madou, “Fundamentals of Microfabrication”, CRC Press LLC, USA, 1997.
    [17]Yee, Y., Chun, K., Lee, J. D., and Kim, C.-J., “Polysilicon surface modification technique to reduce sticking of microstruturers”, Sens. Actuators, Vol. A52, nos. 1-3, pp.145-150, Apr. 1996.
    [18]Chang-Jin Kim, John Y. Kim, Balaji Sridharan, “Comparative evaluation of drying techniques for surface micromachining”, Sensor and Actuators A, 64, pp.17-26, 1998.
    [19]Takeshima, N., Gabriel, K. J., Ozaki, M., Takahashi, J., Horiguchi, H., and Fujita, H., “Electrostatic Parallelogram Actuators”, Proceedings of Transducers ''91, the 1991 International Conference on Solid-State Sensors and Actuators, IEEE Press, San Francisco, CA, pp.188-191, June 24-27, 1991.
    [20]Mulhern, G. T., Soane, D. S and Howe, R. T., “Supercritical Carbon Dioxide Drying of Microstructure”, Processing of Transducers ''93, the 7th International Conference on Solid-State Sensors and Actuators, Yokohama, Institute of Electrical Engineers, Japan, pp.296-299, June 7-10, 1993.

    QR CODE
    :::