跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許朕綱
Chen-Kang Hsu
論文名稱: 旋轉塗佈摻雜共擴散製程開發並應用於 N 型矽晶雙面受光型太陽能電池
Fabrication of spin-on dopants co-diffusion process and applying to bifacial n-type silicon solar cells
指導教授: 陳一塵
I-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: N 型單晶矽旋轉塗佈摻雜高溫共擴散法雙面受光型太陽能電池
外文關鍵詞: n-type Si cells, co-diffusion process, spin-on dopants, bifacial n-Si solar cells
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於 N 型單晶矽晶圓,因生產成本的下降,專家們預測從 2013 年後在太陽能產業的比重會日益增加,甚至成為太陽能產業的主流,所以不論學界及業界對於 N 型單晶矽太陽能電池的開發成本與轉換效率所投入的研究會日益增加,而本論文也針對 N 型單晶矽太陽能電池進行製程上的改良。
    對於一般以擴散製程製作的 N 型太陽能電池而言,在形成電池射極 (Emitter) 與背表面電場 (Back surface field, BSF) 的過程都是藉由外加載子高溫擴散進入矽晶圓形成,在這過程中除了傳統氣態擴散的製程較為危險和複雜以外,對矽晶圓造成多次熱應力使矽晶圓品質下降也是另外一個缺點。所以在本論文裡,藉由磷酸與硼酸的旋轉塗佈高溫共擴散法 (Co-diffusion by spin-on dopants),以一次高溫擴散的方式形成射極與背表面電場,這樣不僅擴散源較為安全環保,另外有效的降低電池製作成本及減少電池製備的時間也是此製程的優點。


    In conventional n-type silicon solar cells fabrication processing, the emitter and the back surface field (BSF) are formed through two-step diffusion. However, there
    are some disadvantages in traditional two-steps diffusion process such as complicated procedures, high thermal budge, toxic and cost.
    In conventional diffusion process, BBr 3 and POCl 3 are usually used to be the dopants sources. In this thesis, it was used phosphorous acid and boron acid to be the dopants sources. We also combined the co-diffusion process and spin-on dopants
    process to form the emitter and BSF of n-type silicon solar cells. It could effectively reduce the annealing time and decrease the production cost. Besides, the dopants sources (phosphorous acid and boron acid) are non-toxic.
    This novel process is compared to the traditional two-step diffusion by spin-on
    dopants. The lifetime measurement and implied open-circuit voltage measurement are
    carried out.
    The efficiency of the bifacial n-type silicon solar cell=11.5%, Voc =597.2 mV, Jsc =33.0 mA/cm2 and fill factor =58.5 %.

    摘 要 - - - - - - - - - - ---------------- - - - - - - I A b s t r a c t - - - - - -- --- - - - - - - - - - - I I 致 謝 - - - - - - - -- - - ------ - - - - - - - - - I I I 圖 目 錄 - - - - - - - - - - - - - - - - - - - - - - - V 表 目 錄 - - - - -- - - - - - - - - - - - - - - - V I I I 第 一 章 緒 論 - - - - - - - - - - - - - - - - - - - - - 1 1 - 1 前 言 - - - - - - - - - - - - - - - - - - - - - - 1 1-2研究背景與動機--------------==------------------------3 第二章文獻回顧-------------------------------------------5 2-1概論-------------------------------------------------5 2-2太陽光譜----------------------------------------------7 2-3太陽能電池的分類--------------------------------------9 2-3-1 太陽能電池的世代-----------------------------------9 2-3-2 矽基太陽能電池分類---------------------------------9 2-3-3晶體矽太陽能電池結構--------------------------------10 2-4 太陽能電池基本原理----------------------------------14 2-4-1太陽能電池運作機制---------------------------------14 2-4-2太陽能電池基礎參數---------------------------------15 2-5 太陽能電池複合機制----------------------------------20 2-6 表面鈍化機制----------------------------------------23 2-6-1表面鈍化效應---------------------------------------23 2-6-1-1 磷擴散的表面鈍化效應-----------------------------24 2-6-1-2 硼擴散的表面鈍化效應-----------------------------25 2-6-2鄰擴散與硼擴散製程---------------------------------27 第三章研究方法------------------------------------------30 3-1 實驗流程--------------------------------------------30 3-2 擴散源溶液製備--------------------------------------31 3-3 基板粗糙化------------------------------------------31 3-4 表面鈍化效應分析------------------------------------32 3-5 雙面受光型太陽能電池開發-----------------------------34 3-6 儀器分析--------------------------------------------36 第四章結果探討------------------------------------------38 4-1 親水層製作------------------------------------------38 4-2 基本雙面擴散分析------------------------------------39 4-2-1不同擴散時間的分析---------------------------------39 4-2-2不同擴散源濃度的分析--------------------------------42 4-2-3不同擴散氣氛的分析---------------------------------45 4-3 矽晶太陽能電池開發----------------------------------49 4-3-1 共擴散製程與兩段擴散製程表面鈍化效應比較------------49 4-3-2太陽能電池特性分析---------------------------------50 第五章結論----------------------------------------------52 參考文獻------------------------------------------------53


    參考文獻
    [1]International Institurte for Applied Systems Analysis, 2012.
    [2]http://climate.nasa.gov/key_indicators#globalTemp
    [3]https://www.theclimategroup.org/what-we-do/news-and-blogs/global-renewable-en
    ergy-capacity-increased-120-since-2000
    [4]https://commons.wikimedia.org/wiki/File:Price_history_of_silicon_PV_cells_since
    _1977.svg
    [5] S. Pizzini, "Towards solar grade silicon: Challenges and benefits for low cost
    photovoltaics", Solar Energy Materials & Solar Cells, 94, 1528-1533, 2010.
    [6] D. Macdonald, "PHOSPHORUS GETTERING IN MULTICRYSTALLINE
    SILICON STUDIED BY NEUTRON ACTIVATION ANALYSIS", IEEE, 2,
    0-7803-7471-1, 2002.
    [7]M. Kerr and A. Cuevas, “General parameterization of Auger recombination in
    crystalline silicon”, Journal of Applied Physics, 91, 2473-2481 ,2002.
    [8] S. Muramatsu., et al., “Effect of hydrogen radical annealing on SiN passive solar
    cells”. Solar Energy Materials and Solar Cells., 65, 599-606 ,2001.
    [9] Y. Lee et al., “Stability of SiN X /SiN X double stack antireflection coating for single
    crystalline silicon solar cells”. Nanoscale Research Letters, 7, 1-6 ,2012.
    [10] S. Dauwe, L.Mittelstadt, A. Metz, and R. Hezel “Experimental evidence of
    parasitic shunting in silicon nitride rear surface passivated solar cells”. Progress in
    photovoltaics, 10, 271-278, ,2002.
    [11] S. Salemi et al., “The effect of defects and their passivation on the density of
    states of the 4H-silicon-carbide/silicon-dioxide interface”, Journal of Applied Physics
    113,053703 ,2013.
    [12] L.S.Chang, P.L. Gendler, and J.H. Jou, “Thermal, mechanical and chemical 54

    effects in the degradation of the plasma-deposited alpha-rich passivation layer in a
    multilayer thin-film device”. Journal of Materials Science, 26, 1882-1890 ,1999.
    [13] J.H. Jang and K.S. Lim, “Post hydrogen treatment effects of boron-doped
    a-SiC:H p-layer of a-Si:H solar cell using a mercury-sensitized photo-chemical vapor
    deposition method”, Japanese journal of applied physics part 1-regular papers short
    notes & review papers, 36, 6230-6236 ,1997.
    [14] S. Sepeai et al., “Surface passivation studies on n +
    pp
    +
    bifacial solar cell”.
    International Journal of Photoenergy, 10, 1155-1162, 2012.
    [15] J.D. Alamo, J.V. Meerbergen, F. d'Hoore, J. Nijs, “High-low junctions for solar
    cell applications”. Solid-State Electronics, 24, 533-538 ,1980.
    [16] M. P. Godlewski, C. R. Baraona, W. Henry , “Low-high junction theory applied
    to solar cells”, 10th Photovoltaic Specialists' Conf., IEEE, 29, 131-150, 1990.
    [17] https://www.newport.com/f/solar-simulator-accessories
    [18] http://pveducation.org/pvcdrom/properties-of-sunlight/atmospheric-effects
    [19] http://www.slideshare.net/maliksameeullah/solar-pv-cell-31223997
    [20] S. Park, S. Bae, H. Kim, S. Kim, D.Y. Kim, H. Park, S.Kim, S.J. Tark, C.S. Son,
    D. Kim, “Effects of controllable process factors on Al rear surface bumps in Si solar
    cells”, Current Applied Physics, 12, 17-22,2012.
    [21]http://www.solarchoice.net.au/blog/news/quiet-innovations-keeping-screen-printe
    d-solar-cells-on-top-080215
    [22] J. Zhao, A. Wang, M.A. Green , “High efficiency PERL silicon solar cells on FZ
    and MCZ substrates”, Technical digest of the 11th International Photovoltaic Science
    and Engineering Conference, 65, 429-435 ,2001.
    [23] S. Gatz, K. Bothe, J. Mueller, T. Dullweber, and R. Brendel, “Analysis of local
    Al-doped back surface fields for high efficiency screen-printed solar cells”, Energy 55

    Procedia, 8, 318–323 ,2011.
    [24] A.U. Rehman, S.H. Lee “Review of the Potential of the Ni/Cu Plating Technique
    for Crystalline Silicon Solar Cells” Materials, 7(2), 1318-1341, 2014
    [25] http://www.panasonic.com/global/home.html
    [26] A.U. Rehman, S.H. Lee “ Advancements in n-Type Base Crystalline Silicon
    Solar Cells and Their Emergence in the Photovoltaic Industry”, The Scientific World
    Journal, 470437, 2013
    [27] http://www.pv-tech.org/solar-media-store-shutdown
    [28] http://old.hssyxx.com/zhsj/kexue-2/co6-2/6-21/206.htm
    [29] M. wolf, H. Rauschenbach, Advanced energy conversion, 3, 455-479 ,1963
    [30] S.O. Kasap “Optoelectronics and Photonics Principles and Practices, Prentice –
    Hall”, 2001.
    [31] H. Hoppe, N. S. Sariciftci, “Organic solar cells”, Journal of materials research,
    19, 1924-1945 ,2004.
    [32] B. Fischer, “Loss analysis of crystalline silicon solar cells using
    photo-conductance and quantum efficiency measurements”, PhD Thesis, University
    of Konstanz , 2003.
    [33] R. Schimpe, “Theory of reflection at the facet of a semiconductor-laser”,
    International Journal of Electronics and Communications, 46, 80-85 ,1992.
    [34] A. Das, "Development of high-efficiency boron diffused silicon solar cells", PhD
    dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical
    and Computer Engineering, 2012
    [35] A. G. Aberle, Crystalline silicon solar cells: advanced surface passivation and
    analysis, University of New South Wales, Sydney NSW 2052, 1999.
    [36] J. P. Colinge and C. A. Colinge, “Physics of semiconductor devices”, Kluwer
    academic publishers, 2005. 56

    [37] S. M. Sze, and K. K. Ng, “Physics of semiconductor devices”, John Wiley &
    Sons, Inc., Hoboken, NJ, USA. 2006.
    [38] S.J. Choi, et al., “The electrical properties and hydrogen passivation
    effect in monocrystalline silicon solar cell with various pre-deposition
    times in doping process”, Renewable Energy, 54, 96-100 ,2013.
    [39] A. B. Sproul, M. A. Green, and A. W. Stephens, “Accurate determination of
    minority carrier-and lattice scattering-mobility in silicon from photo-conductance
    decay”, J. Appl. Phys., 72, 4161-4171 ,1992.
    [40] M. S. Tyagi and R. V. Overstraeten, “Minority carrier recombination in heavily
    doped silicon”, Solid-St. Electron., 26, 577-597 ,1983.
    [41] M. J. Kerr and A. Cuevas, “General parameterization of Auger recombination in
    crystalline silicon”, J. Appl. Phys., 91, 97-104 ,2002.
    [42] W. Shockley and W. Read, “Statistics of the Recombination of holes and
    electrons”, Phys. Rev., 87, 835-842 ,1952.
    [43] I. Martín, M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R.
    Alcubilla “Crystalline silicon surface passivation with amorphous SiCx:H films
    deposited by plasma-enhanced chemical-vapor deposition”, Journal of
    Applied Physics, 98, 114912-114921 ,2005.
    [44] M. Kerr and A. Cuevas, “General parameterization of auger recombination in
    crystalline silicon”, Journal of Applied Physics, 91, 2473-2481 ,2002.
    [45] S. Dauwe, “Low-temperature surface passivation of crystalline Silicon and its
    application to the rear side of solar cells”, harderberg ,2004.
    [46] H. Park et al, “Effect of the phosphorus gettering on si heterojunction solar cells“,
    International Journal of Photoenergy, 794867, 2012.
    [47] G. Singh, V. Amit, R. Jeyakumar “Fabrication of c-Si solar cells using boric acid 57

    as a spin-on dopant for back surface field“, The Royal Society of Chemistry, 4, 4225–
    4229 ,2014.
    [48] A. Das, "Development of high-efficiency boron diffused silicon solar cells", PhD
    dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical
    and Computer Engineering , 2012.
    [49] J. Peter , "The influence of diffusion-Induced dislocations on high efficiency
    silicon solar cells", IEEE Transactions on electron devices, 53, 3 ,2006.
    [50] H. Park et al, “Effect of the phosphorus gettering on si heterojunction solar cells“,
    International Journal of Photoenergy, 794867 ,2012.
    [51] K.S. Ryu, “DEVELOPMENT OF LOW-COST AND HIGH-EFFICIENCY
    COMMERCIAL SIZE N-TYPE SILICON SOLAR CELLS”. PhD
    dissertation ,Georgia Institute of Technology , 2015
    [52] V. D. Mihailetchi, Proc. 25
    th
    Eur. Photovoltaic Sci. Eng. Conf., 1446–1448 ,2010.
    [53] G. Singh, The Royal Society of Chemistry, 4, 4225–4229 ,2014.
    [54] J. LIBAL. et al., Proceedings of the 22
    th
    European Photovoltaic Solar Energy
    Conference, 1382-1386 , 2007.
    [55] J. Y. Lee and S. W. Glunz, Proc. 19
    th
    EU-PVSEC, 998-1001 ,2004.
    [56] G. Bueno, Proc. 20
    th
    EU-PVSEC, 1458-1461 ,2005.
    [57] A. Das, "Development of high-efficiency boron diffused silicon solar cells", PhD
    dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical
    and Computer Engineering , 2012.
    [58] C. Gao, Y. Lu, P. Dong, J. Yi, X. Ma, and D. Yang, “Boron deactivation in
    heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level
    understanding”, Applied Physics Letters, 104, 032102 ,2014.
    [59] F. Ma et al, “Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon”, J. Appl. Phys., 116, 184103 ,2014.
    [60] B. Bazer-Bachi et al., “Higher emitter quality by reducing inactive phosphorus”,
    Solar Energy Materials & Solar Cells, 105, 137-141 ,2012.
    [61]T. Joge et al, “Low-Temperature Boron Gettering for Improve the Carrier
    Lifetime in Fe-Contaminated Bifacial Silicon Cells with n
    +
    pp
    +
    Back-Surface-Field
    Structure”, Jpn. J. Appl. Phys., 42, 5397-5404 ,2003.
    [62] Y. Wu, X. Yu, H. He, P. Chen and D. Yang “Suppression of boron-oxygen
    defects in Czochralski silicon by carbon co-doping”, Applied Physics Letters, 106,
    102105 ,2015.
    [63] N. Ganagona, L. Vines, E. V. Monakhov, and B. G. Svensson, “Transformation
    of divacancies to divacancy-oxygen pairs in p-type Czochralski-silicon mechanism of
    divacancy diffusion”, J. Appl. Phys., 115, 034514 ,2014.
    [64] D. Kumar, S. Saravanan and P. Suratkar ”Effect of oxygen ambient during
    phosphorous diffusionon silicon solar cell”, Journal of Renewable and Sustainable
    Energy 4 ,033105, 2012

    QR CODE
    :::