| 研究生: |
劉冠君 Kuan-Chun Liu |
|---|---|
| 論文名稱: |
二階段成長法成長銀薄膜在銅(111)面上利用光電子能譜研究 Photoemission study of Ag films on Cu(111) grown with a two-step method. |
| 指導教授: |
陸大安
Dah-An Luh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 二階段成長法 、光電子能譜 、銀薄膜 |
| 外文關鍵詞: | photoemission, Ag/Cu(111), Ag film, photoelectron spectroscopy |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用角度解析光電子能譜術研究銀薄膜成長在銅(111)面的系統,Ag/Cu(111)薄膜系統是標準晶格不匹配的系統,差13%的晶格常數會使得鍍上去的銀薄膜產生波狀的起伏,以及界面的空洞和不完美,以致於薄膜無法平整的成長,在過往的研究中大部分都是在室溫下成長這個系統,薄膜僅能一層一層的成長到2ML,3ML以上就是以三維的成長方式成長薄膜,屬於Stranski-Krastanov mode,我們期待能夠有更好的方式成長大面積並且是原子尺度平坦的薄膜。相關的研究顯示二階段成長法能夠減少薄膜結晶時界面所造成的影響,我們透過層數解析的表面電子態以及量子井態了解薄膜的成長情況,控制適當的退火溫度使薄膜完美的成長。實驗結果顯示這個新的成長方式能夠成功的減少厚度上的變因,層數解析的表面電子態以及量子井態更說明了薄膜能夠平整的成長。此外,我們發現一些過渡的薄膜結構以及量測光電子能譜對表面所造成的影響,這些特別的現象也都在本論文中做討論。
We have studied epitaxial Ag films on Cu(111) with angle-resolved photoelectron spectroscopy. The large lattice mismatch between Ag and Cu causes a strong corrugation on the Ag adlayer. The growth of Ag/Cu(111) thin films is the Stranski-Krastanov mode at room temperature: layer-by-layer growth for up to 2-ML and three-dimensional island growth at higher coverage. Recent studies suggest that a two-step growth technique can greatly reduce the thickness variation of metallic thin films. Here, we report the studies on the growth of Ag/Cu(111) thin film with the two-step technique. The growth of Ag films on Cu(111) is characterized by the coverage-dependent Shockley states near of the Ag/Cu(111) surface. Our result indicates that the novel growth method greatly reduces the fluctuation of the thickness of Ag/Cu(111) thin films. Besides, we have discovered a transition structure of the films, and we also studied degradation of the surface during VUV-photoemission experiments. Those interesting phenomenon discuss in this thesis.
[1] M. A. Mueller, T. Miller, and T.-C. Chiang, Phys. Rev. B 41, 5214 (1990).
[2] A. Bendounan, H. Cercellier, Y. Fagot-Revurant, B. Kierren, V. Yu Yurov, and D. Malterre, Phys. Rev. B 67, 165412 (2003).
[3] S. Mathias, M. Wessendorf, S. Passlack, M. Aeschlimann, and M. Bauer, Appl. Phys. A 82, 439-445 (2006).
[4] Dah-An Luh, Cheng-Maw Cheng, Chi-Ting Tsai, Ku-Ding Tsuei, and Jian-Ming Tang, Phys. Rev. Lett. 100, 027603 (2008).
[5] S. Hüfner, Photoelectron Spectroscopy: Principle and Application, Third edition, Springer, 2003.
[6] P. M. Echenique, J. B. Pendry: J.Phys. C 11, 2065 (1978).
For a review of the results obtained with the Echenique-Pendry method see
N. V. Smith, C. T. Chen: Surf. Sci.247, 133 (1991).
[7] T.-C. Chiang, Surf Sci. Rep. 39 181-235 (2000).
[8] Alberto Pimpinelli and Jacques Villan, Physics of crystal growth, Cambridge University Press (1998).
[9] Isabelle Meunier, Guy Tréglia, Jean-Marc Gay, Bernard Aufray, and Bernard Legrand, Phys. Rev. B 59, 10910 (1999).
[10] N. V. Smith, Phys. Rev. B 32, 3549 (1985).
[11] F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Hüfner, Phys. Rev. B 63, 115415 (2001).
[12] T. C. Hsieh, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 55, 2483 (1985).
[13] A. L. Wachs, A. P. Shapiro, T. C. Hsieh, and T.-C. Chiang, Phys. Rev. B 33, 1460 (1986).
[14] R. Courths, H. Wern, U. Hau, B. Cord, V. Bachelier and S. Hüfner, J. Phys. F: Met. Phys.14,1559 (1984).
[15] H. Eckardt, L. Fritsche, and J. Noffke, J. Phys. F: Met. Phys. 14, 97 (1984).
[16] R. Hesse, T. Chassé R. Szargan, Fresenius J Anal Chem 365:48-54 (1999).
[17] 呂登復,實用真空技術,國興出版社,民國92年十月.
[18] Synchrotron Light Source, NSRRC.
[19] http://www.nsrrc.org.tw/chinese/index.aspx
[20] Quartz crystal thickness monitor manual, LEYBOBD INFICON INC.
[21] C.-M. Cheng, K.-D. Tsuei, and D.-A. Luh , J. Phys. D: Appl. Phys. 41, 195302 (2008).
[22] R. Paniago, R. Matzdorf, G. Meister, and A. Goldmann, Surf. Sci.336, 113-122 (1995).
[23] G. Nicolay, F. Reinert, F. Forster, D. Ehm, S. Schmidt, B. Eltner, and S. Hüfner, Surf. Sci. 543, 47-56 (2003).