跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖國宏
Kuo-Hung Liao
論文名稱: 應用深度學習於微型軸承量測主軸之振動值預測與異常分類研究
指導教授: 董必正
Pi-Cheng Tung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系在職專班
Executive Master of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 87
中文關鍵詞: 軸承軸頸軸承振動檢測深度學習機器學習
外文關鍵詞: Bearing, Journal Bearing, Vibration Detection, Deep Learning, Machine Learning
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所設計之主軸專為微型軸承與小徑軸承量測應用,透過振動感知器監控軸
    承運行情況。測試過程中將待測軸承安裝於主軸軸心並施加適當推力載荷,以獲取軸
    承運轉時之振動數據。該主軸結構類似軸頸軸承,並搭配Turbine Oil No.56 作為潤滑
    介質。隨著運行時間增加,軸心、銅襯間之磨耗將導致振動值上升,進而影響量測準
    確性。
    本研究提出三種建模策略以預測主軸振動值並進行良品與不良品判別。方法一以
    振動值反向預測配合間隙,因特徵過於單一,模型表現不佳,測試 R2 多為負值。方
    法二改以幾何尺寸與表面粗糙度等數值特徵預測振動值,表現顯著提升,MLP 模型測
    試 R2 可達 0.493。方法三進一步結合 ResNet101 擷取之圖像特徵與數值資料,建構
    多模態模型,整體表現穩定,但高維特徵導致部分模型產生過擬合,第一層預測趨於
    一致,限制堆疊效果。進一步將圖像特徵降維後,雖抑制過擬合,但預測能力同步下
    降。
    分類方面,模型多能穩定辨識良品,但不良品 Recall 偏低,受限於樣本不平衡與
    邊界樣本比例過高。整體而言,融合圖像與數值特徵有助提升振動預測能力,未來可
    從特徵選擇、資料擴增與不平衡學習進行優化,以強化缺陷辨識與實務應用效能。


    The spindle developed in this study is designed for measuring miniature and smalldiameter
    bearings. A vibration sensor monitors the bearing’s condition during testing, where
    the bearing is mounted on the spindle shaft under thrust load to collect vibration data. The
    spindle resembles a journal bearing and uses Turbine Oil No.56 for lubrication. Over time,
    wear between the shaft and copper bushing increases vibration, affecting measurement
    accuracy.
    Three modeling strategies are proposed to predict spindle vibration and classify product
    quality. Method 1 uses vibration to inversely predict clearance but performs poorly due to
    limited input features, yielding mostly negative test R2 values. Method 2 predicts vibration
    using numerical features like geometry and surface roughness, showing notable improvement
    with MLP reaching a test R2 of 0.493. Method 3 combines ResNet101-extracted image
    features with numerical data to build a multimodal model. Performance remains stable,
    though high-dimensional features lead to overfitting and similar outputs from first-layer
    models, limiting stacking effectiveness. Dimensionality reduction mitigates overfitting but
    reduces predictive power.
    For classification, models reliably identify good samples, but defective recall remains
    low due to data imbalance and borderline cases. Overall, combining image and numeric
    features improves vibration prediction. Future work may enhance defect detection through
    feature selection, data augmentation, and imbalanced learning.

    摘要 ..................................................................................................................................... i Abstract ............................................................................................................................... ii 目錄 ................................................................................................................................... iv 圖目錄 ............................................................................................................................... vi 一、緒論 ............................................................................................................................ 1 1-1 研究背景與動機 ................................................................................................. 1 1-2 研究目的 ............................................................................................................. 5 1-3 研究範圍與限制 ................................................................................................. 5 1-4 論文架構 ............................................................................................................. 6 二、文獻探討 .................................................................................................................... 7 2-1 表面粗糙度與振動關聯性 ................................................................................. 7 2-2 機器學習的軸承性能預測 ............................................................................... 10 2-3 深度學習的接觸粗糙度與摩擦誘導振動關聯性識別 ................................... 13 2-4 文獻小結 ........................................................................................................... 16 三、研究方法 .................................................................................................................. 17 3-1 資料蒐集 ........................................................................................................... 19 3-1-1 尺寸及圓筒度量測 ............................................................................... 21 3-1-2 表面粗糙度量測 ................................................................................... 23 3-1-3 、墊片圖像拍攝 ................................................................................... 25 3-2 模型選用介紹 ................................................................................................... 26 3-2-1 隨機森林RF .......................................................................................... 26 3-2-2 支持向量機SVM .................................................................................. 30 3-2-3 K 最近鄰KNN ....................................................................................... 33 3-2-4 LASSO .................................................................................................... 36 3-2-5 Elastic Net ............................................................................................... 38 3-2-6 多層感知機模型MLP .......................................................................... 40 3-2-7 XGBoost ................................................................................................. 42 3-2-8 Stacked Model ........................................................................................ 44 四、模型評估結果 .......................................................................................................... 45 4-1 以振動值為輸入,反向預測配合間隙 ........................................................... 45 4-2 以幾何與表面數值參數為輸入,預測主軸振動值 ....................................... 51 4-3 融合幾何參數與影像特徵進行振動預測 ....................................................... 58 五、結論 .......................................................................................................................... 70 參考文獻 .......................................................................................................................... 72

    ﹝1﹞ M. Moschopoulos, G. N. Rossopoulos, and C. I. Papadopoulos, “Journal
    bearing performance prediction using machine learning and octave-band signal analysis
    of sound and vibration measurements,” POLISH MARITIME RESEARCH, vol. 28, no.
    3(111), pp. 137–149, Polish Maritime University, 2021.
    ﹝2﹞ W.-J. Lin, S.-H. Lo, H.-T. Young, and C.-L. Hung, “Evaluation of deep
    learning neural networks for surface roughness prediction using vibration signal
    analysis,” Applied Sciences, vol. 9, no. 7, article 1462, MDPI, Apr. 2019.
    ﹝3﹞ N. Motamedi, V. Magnier, and H. Wannous, “Towards the identification
    of the link between the contact roughness and the friction-induced vibration: Use of deep
    learning,” European Journal of Mechanics - A/Solids, vol. 94, pp. 1–19, Elsevier, 2023.
    ﹝4﹞ G.-C. Lee, Y.-C. Lin, and C.-L. Hung, “Application of Vibration Signal
    Analysis for Evaluating Surface Roughness in Milling Operation,” Applied Sciences,
    vol. 8, no. 10, article 1859, MDPI, Oct. 2018.
    ﹝5﹞ L. Zoupas, M. Wodtke, C. I. Papadopoulos, and M. Wasilczuk, “Effect of
    manufacturing errors of the pad sliding surface on the performance of the hydrodynamic
    thrust bearing,” Tribology International, vol. 134, pp. 211–220, Elsevier, Jan. 2019.
    ﹝6﹞ S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, “Deep learning
    algorithms for bearing fault diagnostics: A comprehensive review,” IEEE Access, vol. 8,
    pp. 29857–29881, IEEE, 2020.
    ﹝7﹞ T. Nagaraju, S. C. Sharma, and S. C. Jain, “Influence of surface roughness
    effects on the performance of non-recessed hybrid journal bearings,” Tribology
    International, vol. 35, no. 7, pp. 467–487, Elsevier, July 2002.
    ﹝8﹞ J. W. Lund, “Review of the concept of dynamic coefficients for fluid film
    journal bearings,” Journal of Tribology, vol. 109, no. 1, pp. 37–41, ASME, Jan. 1987.
    ﹝9﹞ A. Liaw and M. Wiener, “Classification and regression by randomForest,”
    R News, vol. 2, no. 3, pp. 18–22, December 2002.
    ﹝10﹞ A. F. Quiñonez and G. E. Morales-Espejel, “Surface roughness effects in
    hydrodynamic bearings,” Tribology International, vol. 98, pp. 212–219, Elsevier, June
    2016.
    ﹝11﹞ V. Salunkhe and R. Desavale, “An intelligent prediction for detecting
    bearing vibration characteristics using a machine learning model,” Journal of
    Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, vol. 4,
    no. 3, pp. 1–20, ASME, Jan. 2021.
    ﹝12﹞ C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
    vol. 20, no. 3, pp. 273–297, Springer, Sept. 1995.
    ﹝13﹞ C. J. C. Burges, “A tutorial on support vector machines for pattern
    recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, Kluwer
    Academic Publishers, 1998.
    ﹝14﹞ R. S. Umamaheswara Raju, K. Ravi Kumar, K. Vargish, and M. Bharath
    Kumar, “Machine learning based surface roughness assessment via CNC spindle bearing
    vibration,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol.
    19, pp. 477–494, Springer, 2025.
    ﹝15﹞ A. Sharma, L. Mathew, R. Jigyasu, and S. Chatterji, “Bearing fault
    diagnosis using weighted K-nearest neighbor,” Proceedings of the 2nd International
    Conference on Trends in Electronics and Informatics (ICOEI 2018), IEEE, pp. 1132–
    1137, June 2018.
    ﹝16﹞ M. Amarnath, V. Sugumaran, and H. Kumar, “Exploiting sound signals
    for fault diagnosis of bearings using decision tree,” Measurement, vol. 46, no. 3, pp.
    1250–1256, Elsevier, April 2013.
    ﹝17﹞ V. Sugumaran, V. Muralidharan, and K. I. Ramachandran, “Feature
    selection using Decision Tree and classification through Proximal Support Vector
    Machine for fault diagnostics of roller bearing,” Mechanical Systems and Signal
    Processing, vol. 21, no. 2, pp. 930–942, Elsevier, February 2007.
    ﹝18﹞ C. Sun, Z. Zhang, and Z. He, “Research on bearing life prediction based
    on support vector machine and its application,” Journal of Physics: Conference Series,
    vol. 305, pp. 012028, IOP Publishing, July 2011.
    ﹝19﹞ F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
    Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
    Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning
    in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, October
    2011.
    ﹝20﹞ A. Moosavian, H. Ahmadi, A. Tabatabaeefar, and M. Khazaee,
    “Comparison of two classifiers; K-nearest neighbor and artificial neural network, for
    fault diagnosis on a main engine journal-bearing,” Shock and Vibration, vol. 20, no. 2,
    pp. 263–272, Hindawi, January 2013.
    ﹝21﹞ A. Moosavian, H. Ahmadi, A. Tabatabaeefar, and B. Sakhaei, “An
    appropriate procedure for detection of journal-bearing fault using power spectral density,
    K-nearest neighbor and support vector machine,” International Journal on Smart Sensing
    and Intelligent Systems, vol. 5, no. 3, pp. 685–700, September 2012.
    ﹝22﹞ K. M. Saridakis, P. G. Nikolakopoulos, C. A. Papadopoulos, and A. J.
    Dentsoras, “Identification of wear and misalignment on journal bearings using artificial
    neural networks,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal
    of Engineering Tribology, vol. 226, no. 1, pp. 46–56, SAGE Publications, January 2012.
    ﹝23﹞ J. Moder, P. Bergmann, and F. Grün, “Lubrication regime classification of
    hydrodynamic journal bearings by machine learning using torque data,” Lubricants, vol.
    6, no. 4, article 108, MDPI, December 2018.
    ﹝24﹞ D. Dowson, “A generalized Reynolds equation for fluid-film lubrication,”
    International Journal of Mechanical Sciences, vol. 4, no. 2, pp. 159–170, Elsevier,
    March–April 1962.
    ﹝25﹞ T. Narendiranath Babu, T. Manvel Raj, and T. Lakshmanan, “A review on
    application of dynamic parameters of journal bearing for vibration and condition
    monitoring,” Journal of Mechanics, vol. 31, no. 4, pp. 391–416, The Society of
    Theoretical and Applied Mechanics, August 2015.
    ﹝26﹞ T. Abedin, S. P. Koh, C. T. Yaw, C. C. Phing, S. K. Tiong, J. D. Tan, K.
    Ali, K. Kadirgama, and F. Benedict, “Vibration signal for bearing fault detection using
    Random Forest,” Journal of Physics: Conference Series, vol. 2467, pp. 012017, IOP
    Publishing, December 2022.
    ﹝27﹞ K. F. Brethee, J. Ma, G. R. Ibrahim, F. Gu, and A. D. Ball, “Vibration
    analysis for diagnosis of tribo-dynamic interaction in journal bearings,” in Proceedings
    of the International Conference on the Efficiency and Performance Engineering Network
    (TEPEN 2022), Mechanisms and Machine Science, vol. 129, pp. 877–888, Springer,
    March 2023.
    ﹝28﹞ M. Pusterhofer, F. Summer, M. Maier, and F. Grün, “Assessment of Shaft
    Surface Structures on the Tribological Behavior of Journal Bearings by Physical and
    Virtual Simulation,” Lubricants, vol. 8, no. 1, pp. 1–16, MDPI, January 2020.
    ﹝29﹞ L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms as
    gradient descent,” in Advances in Neural Information Processing Systems (NeurIPS 12),
    Denver, CO, USA, Nov. 29–Dec. 4, 1999.

    QR CODE
    :::