| 研究生: |
吳彥宥 yen-yu wu |
|---|---|
| 論文名稱: |
Xanthomonas campestris pv. campestris未知功能蛋白XC847的晶體結構及功能分析 Structural determination and functional analysis of unknown function protein XC847 in Xanthomonas campestris pv. campestris |
| 指導教授: |
黃雪莉
Shir-Ly Huang 周三和 Shan-Ho Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 結構基因體計畫 |
| 外文關鍵詞: | Xanthomonase campestris pv. campestris, ε186, Pop2, NMR, X-ray, oligoribonuclease, DEDDh family, ISG20 |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究的菌株為Xanthomonase campestris pv. campestris。其含有特殊調節系統(Clp,cAMP receptor protein-like protein),轉錄單位多以單基因方式,與一般細菌不同。又可分泌多醣體(Xanthan gum),具工業價值。但它亦會引起十字花科植物的黑腐病並造成農業巨大的損失。藉由基因體解碼下,此一病原菌被預測的基因約有4100個。因此本論文用了五種不同的載體,並利用E.coli BL21宿主來大量的表逹及篩選可溶性蛋白供NMR及X-ray做分析。此二種解析結構的方法有不同的原理及限制,不過此二種方法可互補。本研究中一共挑選了15個基因,其中4個(XC4107 、XC3183 、XC6232、 XC6774)在PCR階段、7個(XC2797、XC4109、XC6773、XC6835、XC3953、XC4027、XC5047)在表現階段、2個(XC5979、X4187)在光譜測定階段、1個(XC1014)在晶體篩選及1個(XC847)已得到結構。XC847由蛋白質序列比對下,初步預測其功能為oligoribonuclease,被歸為exoribonuclease六個種類中的DEDDh家族中的一員,其含有4個高保留胺基酸DEDDh在3個功能區中。另外比對XC847和DEDDh家族的三個(ISG20、Pop2及ε186)RNase或DNase的結構,結果顯示此XC847和此3個酵素有相同的活性區域。由表面電荷分析,不同exribonuclease在活性中心帶有相同的負電荷分布,而XC847在活性中心也有相同的分布。故由以上結構及序列比對結果說明XC847可能為一個oligoribonuclease。
In this thesis, we have choosen Xanthomonas campestris pv. campestris as our target genome. It is a gram-negative bacterium that is phytopathogenic to cruciferous plants and causes worldwide agricultural loss. However, it also produces exopolysaccharide (xanthan gum) that is of great industrial importance. About 4100 genes are predicted in this genome. Five different vectors are used to construct clones and over-express proteins in the E.coli host to produce enough soluble proteins for X-ray and NMR analysis. Until now, 15 target genes were studied. 4 genes (XC4107 、XC3183 、XC6232、 XC6774) are in the PCR stage, 7 genes (XC2797、XC4109、XC6773、XC6835、XC3953、XC4027、XC5047) are in the overexpression stage, 2 are being analyzed by NMR, 1 being screened for crystallization , and one (XC847) of which the structure has been successfully determined. From sequence alignment, XC847 is predicted as an oligoribonuclease that belongs to the DEDDh family. DEDDh family is one of the six members in the 3'' to 5'' exonuclease superfamily, and is defined by four conserved acidic residues distributed among three separated sequence motifs. Proteins in this family can hydrolyze both DNA and RNA substrates. From the determined 3D structure, XC847 was found to have conserved residues and active site geometry similar to those in the DEDDh family, ISG20、Pop2, andε186. Moreover, the electrostatic surfaces of these 3 exoribonucleses show similar negative charged profile in their active site regions.From sequence alignment and structural comparison, XC847 is identified as an oligoribonuclease.
參考文獻
王旭川(2002) Xanthomonas campestris pv. campestris基因體序列的基因預測與註解(國立清華大學生命科學所碩士論文)
胡玉真(2004)Xanthomonas campestris pv. campestris未知功能蛋白之大量表逹與NMR結構分析(國立中央大學生命科學所碩士論文)
Bae, W., Jones, P.G. and Inouye, M. (1997) CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. J. Bacteriol., 179, 7081-7088.
Beese, L.S. and Steitz, T.A. (1991) Structural basis for the 3''-5'' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J., 10, 25-33.
da Silva, A.C., Ferro, J.A., Reinach, F.C., Farah, C.S., Furlan, L.R., Quaggio, R.B., Monteiro-Vitorello, C.B., Van Sluys, M.A., Almeida, N.F., Alves, L.M. et al. (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417, 459-463.
Datta, A.K. and Niyogi, K. (1975) A novel oligoribonuclease of Escherichia coli. II. Mechanism of action. J. Biol. Chem., 250, 7313-7319.
Frishman, D., Albermann, K., Hani, J., Heumann, K., Metanomski, A., Zollner, A. and Mewes, H.W. (2001) Functional and structural genomics using PEDANT. Bioinformatics, 17, 44-57.
Garman, E.F. and Doublie, S. (2003) Cryocooling of macromolecular crystals: optimization methods. Methods Enzymol., 368, 188-216.
Hamdan, S., Carr, P.D., Brown, S.E., Ollis, D.L. and Dixon, N.E. (2002) Structural basis for proofreading during replication of the Escherichia coli chromosome. Structure (Camb), 10, 535-546.
Hammarstrom, M., Hellgren, N., van Den Berg, S., Berglund, H. and Hard, T. (2002) Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci., 11, 313-321.
Horio, T., Murai, M., Inoue, T., Hamasaki, T., Tanaka, T. and Ohgi, T. (2004) Crystal structure of human ISG20, an interferon-induced antiviral ribonuclease. FEBS Lett., 577, 111-116.
Kapust, R.B. and Waugh, D.S. (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci., 8, 1668-1674.
Laskowski, R.A., Watson, J.D. and Thornton, J.M. (2003) From protein structure to biochemical function? J. Struct. Funct. Genomics, 4, 167-177.
Nguyen, L.H., Erzberger, J.P., Root, J. and Wilson, D.M., 3rd. (2000) The human homolog of Escherichia coli Orn degrades small single-stranded RNA and DNA oligomers. J. Biol. Chem., 275, 25900-25906.
Niyogi, S.K. and Datta, A.K. (1975) A novel oligoribonuclease of Escherichia coli. I. Isolation and properties. J. Biol. Chem., 250, 7307-7312.
Ohnishi, Y., Nishiyama, Y., Sato, R., Kameyama, S. and Horinouchi, S. (2000) An oligoribonuclease gene in Streptomyces griseus. J. Bacteriol., 182, 4647-4653.
Pflugrath, J.W. (2004) Macromolecular cryocrystallography--methods for cooling and mounting protein crystals at cryogenic temperatures. Methods, 34, 415-423.
Pryor, K.D. and Leiting, B. (1997) High-level expression of soluble protein in Escherichia coli using a His6-tag and maltose-binding-protein double-affinity fusion system. Protein Expr. Purif., 10, 309-319.
Qing, G., Ma, L.C., Khorchid, A., Swapna, G.V., Mal, T.K., Takayama, M.M., Xia, B., Phadtare, S., Ke, H., Acton, T. et al. (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol., 22, 877-882.
Shih, Y.P., Kung, W.M., Chen, J.C., Yeh, C.H., Wang, A.H. and Wang, T.F. (2002) High-throughput screening of soluble recombinant proteins. Protein Sci., 11, 1714-1719.
Simpson, A.J., Reinach, F.C., Arruda, P., Abreu, F.A., Acencio, M., Alvarenga, R., Alves, L.M., Araya, J.E., Baia, G.S., Baptista, C.S. et al. (2000) The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature, 406, 151-157.
Thore, S., Mauxion, F., Seraphin, B. and Suck, D. (2003) X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep., 4, 1150-1155.
Xia, B., Etchegaray, J.P. and Inouye, M. (2001) Nonsense mutations in cspA cause ribosome trapping leading to complete growth inhibition and cell death at low temperature in Escherichia coli. J. Biol. Chem., 276, 35581-35588.
Zuo, Y. and Deutscher, M.P. (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res., 29, 1017-1026.
Zarembinski, T.I., Hung, L.W., Mueller-Dieckmann, H.J., Kim, K.K., Yokota, H., Kim, R. and Kim, S.H. (1998) Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc. Natl. Acad. Sci. U S A, 95, 15189-15193.
Zeng, G. (1998) Sticky-end PCR: new method for subcloning. Biotechniques, 25, 206-208.