跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江重致
Chong-Jhih Jiang
論文名稱: 人眼眼球模型與視覺表現之模擬分析研究
Construction of a Human Eye Model for Visual Performance Analysis
指導教授: 孫慶成
Ching-Cherng Sun
陳怡君
Yi-Chun Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 86
中文關鍵詞: 眼球模型人眼視覺行為分析
外文關鍵詞: Visual Performance Analysis, Eye Model, Human Eye
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,主要內容在於建構以生物醫學資料為依據的人類眼球的模型、探討分析視網膜上的影像及人眼散射的討論。其中利用了數學方程式描述水晶體的漸變式折射率以及人眼內各介質色散模型,並使用米氏散射(Mie scattering)模型來模擬人眼水晶體蛋白質造成的散射現象。藉由Code V及ASAP光學軟體的光追跡運算與模擬,此眼球模型的光學表現符合真實人眼的MTF表現與色差行為。在水晶體散射與視網膜眼底漫射模型建構成熟後,這個模型對探討在正常照明情況下以及眩光條件下的人眼視覺表現將會有很高的應用性。


    The main content of this research work includes constructing a biometry-based human eye model, analyzing the image on retina, and discussing the scattering in human eye. The gradient refractive index of the crystalline lens and the dispersive properties of ocular media were modeled by mathematical functions. Mie scattering was introduced to simulate light scatter due to protein particle in crystalline lens. The optical performance of the proposed model was evaluated in CodeV and ASAP. The MTF and chromatic optical powers obtained from the model matched that of physiological eyes. Once the scattering models in crystalline lens and on retina surface are fully developed, this model will be highly potential for investigating visual performance in general and under the influence of glare sources.

    摘要.............................................i 英文摘要........................................ii 致謝...........................................iii 目錄.............................................v 圖索引........................................viii 表索引.........................................xii 第一章 緒論.....................................1  1-1研究動機....................................1  1-2人類眼球構造簡介............................1  1-3人類眼球模型之發展史........................3 1-4論文大綱....................................8 第二章 背景知識及相關研究......................10 2-1基本定義與概念.............................10  2-1-1非球面之光學面...........................10   2-1-2屈光度.................................12   2-1-3 眼球的調節............................12   2-1-4光傳遞函數.............................13   2-1-5照度與輝度.............................14  2-2人眼幾何與折射率之參數.....................15 2-3眩光介紹與失能眩光.........................22 第三章 人類眼球模型的建構......................26 3-1水晶體漸變折射率模型.......................26 3-2幾何結構與介質的建構.......................29 3-3眼球色差的建構.............................35 3-4水晶體散射模型.............................39   3-4-1眼球系統的散射行為.....................39   3-4-2影響水晶體散射行為的因素...............40   3-4-3建構水晶體散射模型.....................41 第四章 模擬結果的驗證與討論....................43 4-1點擴散函數與光傳遞函數.....................43 4-2眼球模型色差驗證...........................50 4-3人眼水平與垂直方向解析度實驗...............55 4-4散射模型的結果討論.........................58   4-4-1眼球模型模擬失能眩光...................58   4-4-2眼底的漫射行為之探討...................60 第五章 結論....................................62 參考文獻........................................63 中英文名詞對照表................................66

    [1] G. Westheimer, “Image quality in the human eye,” Journal of Modern Optics 17, 641-658 (1970).
    [2] M. S. de Almeida and L. A. Carvalho, “Different Schematic Eyes and their Accuracy to the in vivo Eye: A Quantitative Comparison Study,” Brazilian Journal of Physics 37, 378-387 (2007).
    [3] M. Alpern, Handbook of Optics (McGraw Hill, New York, 1978).
    [4] L. S. Pedrotti and F. L. Pedrotti, Optics and Vision (Prentice Hall, New Jersey, 1998).
    [5] D. J. Schanzlin and J. R. Robin, Corneal topography: measuring and modifying the cornea. (Springer Verlag, Berlin, 1992).
    [6] D. R. Sanders and D. D. Koch, An atlas of corneal topography (Oxford University Press, New York, 1993).
    [7] S. D. Klyce, “EyeSys corneal topography measurement applied to calibrated ellipsoidal convex surfaces,” Invest. Ophthalmol. Vis. Sci. 25, 1426–1435 (1984).
    [8] R. J. Mammone, M. Gersten, D. J. Gormley, R. S. Koplin, and V. L. Lubkin, “3-D Corneal Modeling System,” IEEE Trans. Biomed. Eng. 37, 66-72 (1990).
    [9] R. B. Mandell, “The enigma of the corneal contour,” Contact Lens Assoc. Ophthalmol. J. 18, 267-273 (1992).
    [10] J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949- 1955 (1994).
    [11] L. A. Carvalho, A. C. Rom˜ao, M. Stefani, L. A. Carvalho, J. C. Castro, F. Yasuoka, F. Scannavino J´unior, J. Santos, P. Schor, and W. Chamon, “Preliminary results of a high-resolution refractometer using the Hartmann-Shack wave-front sensor: part I,” Arquivos Brasileiros de Oftalmologia 66, 261-268 (2003).
    [12] L. A. V. Carvalho and J. C. Castro, “Preliminary results of na instrument for measuring the optical aberrations of the human eye,” Braz. J. Phys. 33, 140-147 (2003).
    [13] L. A. Carvalho, “A simple and effective algorithm for detection of arbitrary Hartmann-Shack patterns,” J. Biomed. Inform. 37, 1-9 (2004).
    [14] F. Diaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Guell, and P. Artal, “Comparison of the Retinal Image Quality with a Hartmann-Shack Wavefront Sensor and a Double-Pass Instrument,” Invest. Ophthalmol. Vis. Sci. 47, 1710-1716 (2006).
    [15] H. L. Liou and N. A. Brennan, “Anatomical accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. 14, 1684-1695 (1997).
    [16] A. Gullstrand, Helmholtz’s Physiological Optics (Optical Society of America, New York,) Appendix, 350–358 (1924).
    [17] M. Dubbelman, G.L. Van der Heijde, and H.A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Research 45, 117–132 (2005).
    [18] D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. 22, 29-37 (2005).
    [19] R. Navarro, F. Palos, and L. M. González, “Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens,” J. Opt. Soc. Am. 24, 2911-2920 (2007).
    [20] T. M. Aslam, David Haider and I. J. Murray, “Principles of disability glare measurement: an ophthalmological perspective,” Acta Ophthalmologica Scandinavica 85, 354-360 (2007).
    [21] P. W. Cobb, “The influence of illumination of the eye on visual acuity,” Am J Physiol 29, 76-99 (1911).
    [22] J. Johannes, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin Exp Optom 86, 363–370 (2003).
    [23] B. K. Pierscionek and D. Y. C. Chan, ‘‘Refractive index gradient of human lenses,’’ Optom. Vis. Sci. 66, 822–829 (1989).
    [24] R. Navarro, F. Palos, and L. González, “Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. 24, 2175-2185 (2007).
    [25] R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. 2, 1273–1281 (1985).
    [26] R. A. WEALE, “Light absorption by the lens of the human eye,” OPT. ACTA 1, 107-110 (1953).
    [27] K. O. Gilliland, S. Johnsen, M. Sangeetha, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multi-lamellar bodies,” Molecular Vision 14, 572-582 (2008).
    [28] R. Michael, H. Brismar, “Lens growth and protein density in the rat lens after in vivo exposure to ultraviolet radiation,” Invest. Ophthalmol. Vis. Sci. 42, 402–408 (2001).
    [29] K. O. Gilliland, C. D. Freel, S. Johnsen, W. C. Fowler, and M. J. Costello, “Distribution, spherical structure and predicted Mie scattering of multi-lamellar bodies in human age-related nuclear cataracts,” Experimental Eye Research 79, 563–576 (2004).
    [30] P. Artal, M. Ferro, I. Miranda, and R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. 10, 641-658 (1993).
    [31] A. S. Richard, E. Q. Graham, L. Ellie Francis, Gui-shuang Ying, D. Ian Flitcroft, Parag Parekh, Jamin Brown, Joshua Orlow, and Gregor Schmid, “Diurnal Axial Length Fluctuations in Human Eyes,” Investigative Ophthalmology & Visual Science 45, 63-70 (2004).

    QR CODE
    :::