| 研究生: |
陳宣克 Hsuan-Ko Chen |
|---|---|
| 論文名稱: |
電子束微影製作三維非平面微結構及結構表面改質 Fabrication of Three-dimensional Devices with Electron Beam Lithography and Surface Treatment for Application |
| 指導教授: |
周正堂
Cheng-tung Chou 柯富祥 Fu-Hsiang Ko |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 結構表面改質 、微結構 、電子束微影 |
| 外文關鍵詞: | Electron Beam Lithography, Three-dimensional Devices, Surface Treatment |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本篇論文中研究的主題分為兩個部分。一個是以電子束微影製作三維非平面微結構;另一個是三維非平面微結構之表面改質。兩個研究主題的結果,皆期望未來能於微流體晶片上有所應用。
在以電子束微影製作三維非平面微結構的部分。本研究焦點著重於利用電子束直寫及控制不同劑量的優點對SU8-50阻劑進行曝光,首先我們研究SU8-50阻劑厚度對電子束曝光劑量的關係,之後設計圖形並參考厚度對曝光劑量的關係,進而製作我們所要的非平面微結構,包括凹面、斜面及凸面結構,此三種結構期望未來能應用於生物晶片中的微流體晶片,讓微通道內之流體流動方式能更多樣化。在製作出三種傾斜微結構後,以此基礎進一步嘗試製作些變化性的微結構,包括分子篩、螺旋及環狀結構,同樣期望這些結構在未來也能有所應用。除此之外,SU8-50阻劑在電子束曝光後的反應機制,我們也會作一詳細的討論。
在三維非平面微結構之表面改質的部分。本研究焦點著重於利用氧電漿對微結構進行親疏水性的表面改質,首先將微結構經由不同時間的氧電漿處理後,藉由量測水與結構表面的接觸角,判定其親疏水性變化,並利用SEM觀察表面型態及AFM量測表面粗糙度,討論親疏水性的變化與表面型態及粗操度的關係。微結構表面親疏水性的改質,是為了在未來讓微通道能適應更多不同性質之流體,使流體於微通道內流動更加順暢。除此之外,我們也會針對SU8-50阻劑於氧電漿處理前後的熱穩定性與其他阻劑作一詳細的比較。最後就SU8-50阻劑對熱氧化矽及多晶矽,分別在氣體CHF3 / CF4 及Cl2 / O2的蝕刻選擇比,作一詳細的討論。
Abstract
There are two major parts in this thesis. One is the fabrication of three-dimensional non-planar devices with electron beam lithography. The other is the surface treatment and characterization for application in microfluidic device.
The design of non-planar microfluidic channel for the fabrication of three-dimensional non-planar devices with electron beam lithography such as oblique structure is beneficial for future bio-devices. The oblique structure exhibits the advantage of driving fluid with diversification. This study focuses on the modification of SU-8 resist by e-beam and fabrication of three-dimensional devices. The oblique structure of SU-8 polymer material at special dose design is successfully fabricated by electron beam technology. Furthermore, the convex profile, the concave profile or slopes of the profiles can be obtained by only changing the dosage and the unit distance. In addition, the reaction mechanism of the SU-8 material under electron beam exposure is discussed in detail.
The SU8-50 resist about the surface treatment and characterization for application in microfluidic device is used to fabricate the micro-channel devices and the character of hydrophobic and hydrophilic in micro-channel is evaluated. Oxygen-plasma-treated is used to affect the hydrophobic and hydrophilic surfaces of thickness film. From contact angle measurement, the SU8-50 film transformed the hydrophobic property into hydrophilic property after suitable oxygen plasma treatment. The SEM analysis revealed the spherulitic structure of nano-lamellae from polymerization of SU8-50 resists with oxygen plasma-treated time. AFM is used to study the roughness on the surface of oxygen plasma treated SU8-50 membrane. In addition, the etching selectivity of thermal oxide and poly-Si has been examined with the gas CHF3 / CF4 and Cl2 / O2, respectively.
參考文獻
1. 張俊彥,鄭晃忠,積體電路製程及設備技術手冊,中華民國產業科技發展協會,中華民國電子材料與元件協會出版,第十二章, 1997.
2. 陳健銘,生物晶片(Bio-chip)專題研究,工研院電子工業研究所,1999.
3. L. J. Kricka, “Microchip, microarrays, biochips and nanochip: personal laboratories for the 21st century”, Clinica Chimica Acta 307 pp.219-223, 2001.
4. N. Gottschlich, C. T. Culbertson, T. E. McKnight, S. C. Jacobson, J. M. Ramsey, “Integrate microchip-device for the digestion, separation and postcolumn labeling of proteins and peptides”, J. of Chromatography B 745 pp.243-249, 2000.
5. A. Ahmed, C. Bonner, T. A. Desai, “Bioadhesive Microdevices for Drug Delivery: A Feasibility Study* ”, Biomedical Microdevices 3:2 pp.89-96, 2001.
6. G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, Y. H. Lin, “Microfabricated plastic chip by hot embossing methods and their applications for DNA separation and detection”, Sensors and Actuators B 75 pp.142-148, 2001.
7. P. T. Baud, L. Lauer, W. Knoll, “PDMS device for patterned application of microfluids to neuronal cells arranged by microcontact printing”, Biosensors & Bioelectronics 17, pp.87–93, 2002.
8. S. A. Makohliso, D. Le´onard, L. Giovangrandi, H. J. Mathieu, M. Ilegems, and P. Aebischer, “Surface Characterization of a Biochip Prototype for Cell-Based Biosensor Applications”, Langmuir 15, pp.2940-2946, 1999.
9. V. Benoit, A. Steel, M. Torres, Y. Y. Yu, H. Yang, and J. Cooper, “Evaluation of Three-Dimensional Microchannel Glass Biochips for Multiplexed Nucleic Acid Fluorescence Hybridization Assays”, Anal. Chem. 73, pp.2412-2420, 2001.
10. 周正中,白果能,微陣列生物晶片簡介及其應用,科儀新知,23(5),2002.
11. R. Tantra, J. Cooper, “Imaging of protein arrays and gradients using softlithography and biochip technology”, Sensors and Actuators B 82, pp.233-240, 2002.
12. B. Zhao, N. O. L. Viernes, J. S. Moore, D. J. Beebe, “Control and Applications of Immiscible Liquids in Microchannels”, J. AM. CHEM. SOC. 124, pp.5284-5285, 2002.
13. H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of Complex Three-Dimensional Microchannel Systems in PDMS”, J. AM. CHEM. SOC. 125, pp.554-559, 2003.
14. M. Go1sch, H. Blom, J. Holm, T. Heino, R. Rigler, “Hydrodynamic Flow Profiling in Microchannel Structures by Single Molecule Fluorescence Correlation Spectroscopy”, Anal. Chem. 72, pp.3260-3265, 2000.
15. B. Messer, J. H. Song, and P. Yang, “Microchannel Networks for Nanowire Patterning”, J. Am. Chem. Soc. 122, pp.10232-10233, 2000.
16. P. J. Yoo, K. Y. Suh, and H. H. Lee, “Short- and Long-Range Interactions in Thin Films of Polymer Blends in Microchannels”, Macromolecules 35, pp.3205-3212, 2002.
17. A. JP, J. SC, C. CT, R. JM, “Effects of the electric field distribution on microchip valving performance”, Electrophoresis 21 pp.100-106, 2000.
18. H. AG, R. DE, H. JW, J. SC, R. JM, “Microchip device for performing enzyme assays”, Anal Chem 69 pp.1733-1741, 1997.
19. A. Schiltz, J. F. Terpan, S. Brun, and P. J. Pantiez, Microelec. Eng., 30, p.283, 1996.
20. Nonogaki, S., Ueno, T., and Ito, T., “Microlithography Foundamentals in Semiconductor Devices and Fabrication Technology”, Marcel Dekker, New York, pp201, 1998.
21. 施錫龍, 電子束晶圓步進系統簡介 ,電子月刊第二卷第二期,1996.
22. 許兼貴,深紫外線抗反射技術及次100奈米世代電子束直寫阻劑特性研究,國立清華大學原子科學系碩士論文,2001.
23. J. R. Hollahan et al. Eds, “Techniques and Applications of Plasma Chemistry”, Wiley, 1974.
24. E. M. Liston, Proc. IUPAC Int. Symp. On Plasma Chem. (ISPC-9) ,L7-L12, (SEPT. 1989).
25. M. Strobel, C. S. Lyons and K.L Mittal, Plasma Surface Modification of Polymers, Relevance to Adhesion.
26. J. M. Anderson et. al., “A hydrophilic plasma polymerized film composite with potential application as an interface for biomaterials”, J. Biomedical Material Research, 24,PP.1521-1537,1990.
27. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, Pvettiger, “SU-8: a low-cost negative resist for MEMS”, J Micromech. Microeng. 7 pp.121-124, 1997.
28. P. M. Dentinger, K. L. Krafcik, K. L. Simison, R. P. Janek, J. Hachman, “High aspect ratio patterning with a proximity ultraviolet source”, Microelectronic Engineering 61-62 pp.1001-1007, 2002.
29. T. Rosqvist, S. Johansson, “Soft micromolding and lamination of piezoceramic thick films”, Sensor and Actuators A 97-98 pp.512-519, 2002.
30. W. H. Wong, E. Y. B. Pun, “SU8C resist for electron beam lithography”, SPIE 4345 pp.873-880, 2001.
31. K. Lee, N. LaBianca, S. Rishton, and S. Zohlgharnain, J. Vac. Scien. Technol. B 13, pp.3012-3016, 1995.
32. T. Kohlmeier, H. H. Gatzen, “Challenges in using photosensitive embedding material to planarize multi-layer coils for actuator systems”, J. of Magnetism and Magnetic Materials 242-245, pp.1149-1152, 2002.
33. C. H. Ho, K. P. Chin, C. R. Yang, H. M. Wu, S. L. Chen, “Ultrathick SU-8 mold formation and removal, and its application to the fabrication of LIGA-like micromotors with embedded roots”, Sensors and Actuators A 102, pp.130-138, 2002.
34. A. A. Bettiol, I. Rajta, E. J. Teo, J. A. V. Kan, F. Watt, “Proton beam micromachining: electron emission from SU-8 resist during ion beam irradiation”, Nuclear Instruments and methods in Physics Research B 190, pp.154-159, 2002.
35. H. Lorenz, M. Despont, P. Vettiger, and P. Renaud, Microsyst. Technol. 4, pp.143-146, 1998.
36. C. Malek, Proc. SPIE, 3512, pp.277-285, SPIE, 1998.
37. A. Kumar, A. Alagar, M. Rao, Polymer, 43(3), pp.693-702, 2002.
38. W. G. Kim, J. Y. Lee, Polymer, 43(21), pp.5713-5722, 2002.
39. K. Mimura, H. Ito, Polymer, 43(26), 2002, pp.7559-7566.
40. R. B. Bird, Transport Phenomena, John Wiley & Sons pp.34-40, 1960.
41. D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, G. M. Whitesides, Proc. Nat. Acad. Sci. U.S.A. 97, pp.2408-2413, 2000.
42. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezit, H. A. Stone, G. M. Whitesides, Science 295, pp.647-651, 2002.
43. R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, D. J. Beebe, J. Microelectromech. Syst. 9, pp.190-197, 2000.
44. J. R. Hall, C. A. L. Westerdahl, A. T. Devine, M. J. Bodnar, J. Appl. Polym. Sci., 13, pp.2085, 1969.
45. D. H. Kaelble, P. J. Dynes, E. H. Cirlin, J. Adhesion. 6, pp.23, 1974.
46. N. Sprang, D. Theirich, J. Engemann, “Plasma and ion beam surface treatment of polyethylene”, Surface and Coatings Technilogy 74-75, pp.689-695, 1995.
47. K.S. Kim, K.H. Lee, K. Cho, C.E. Park, “Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment”, J. of Membrane Science 199, pp.135-145, 2002.
48. C. M. Chan, Polymer Surface Modification and Characterization, Hanser Publishers, NY, 1993.
49. M. Bryjak, I. Gancarz, Plasma treatment of polyethylene ultrafiltration membranes, Die Angew. Makromol. Chem. 219, pp.117, 1994.
50. S. Wu, E. T. Kang, and K. G. Neoh, Maromolecules 32, pp.186-193, 1999.
51. H. E. M. Niemi, F. S. Denes and R. M. Rowell, Langmuir 15, pp.2985-2992, 1999.