跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳冠佑
Kuan-Yu Chen
論文名稱: 異質多孔介質二相指形流之壓力變化特徵
Pressure Variation Characteristics of Two-phase Flow in Heterogeneous Porous Media
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 104
中文關鍵詞: 指形流異質多孔介質
外文關鍵詞: fingering flow, heterogeneous porous medium
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文藉由光刻微影製程在Hele-Shaw cell中生成兩種尺寸之圓柱形顆粒,作為實驗所使用之異質多孔介質微模型。模型內部以低黏度流體(空氣)驅替高黏度流體(甘油水溶液)使其產生黏性指形,並觀察指形流經異質多孔介質之壓力變化。實驗設計三種粒徑比之模型、三種流率及四種重量百分濃度之甘油水溶液以探討設定參數如何影響模型內壓力之變化。
    分析實驗結果後,本文提出二相流中,低黏度驅替流體隨指形前進時產生的黏滯壓降半經驗公式,而高黏度被驅替流體之黏滯壓降半經驗公式已有學者提出,故二相流中兩流體之壓力變化皆可被描述與預測。此外,本文發現異質孔徑界面壓差亦隨設定參數而改變,進而提出一半經驗公式以預測界面壓差,且由實驗與先前學者之研究可知,界面壓差越大將使大顆粒多孔介質之驅替效果上升。


    In this paper, heterogeneous porous medium micro-model was made by lithography technology of MEMS. Experiments were conducted using the model to observe the pressure change which is caused by low-viscosity fluid (air) displacing high-viscosity fluid (glycerol aqueous solution). Three particle-size ratios, three flow rates and four concentrations of glycerin aqueous solution were considered to investigate how the experimental parameters affect the pressure change.
    After analyzing the experiment results, we proposes a semi-empirical formula that quantified the viscous pressure drop caused by the viscous fingering grows in the two-phase flow, which cover the semi-empirical formula of the viscous pressure drop proposed by previous literature. The pressure changes in two-phase flow can be more precisely described and predicted than before. The experiment found that the pressure difference at the heterogeneous interface changes with the parameters, and a semi-empirical formula was proposed to predict the pressure difference at the interface. It is known from experiments and previous studies that increasing the pressure difference at the interface will enhance the displacing effect in the large granular porous media.

    中文摘要 i Abstract ii 目錄 iii 表目錄 vi 圖目錄 vii 符號說明 xv 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 研究目的 4 第二章 實驗系統 12 2-1 異質多孔介質微模型 12 2-2 流體驅動系統 12 2-3 訊號擷取系統 13 2-3-1 壓力計 13 2-3-2 NI訊號擷取裝置 13 2-4 影像紀錄系統 14 2-5 實驗方法 14 2-5-1 模型製程 14 2-5-1-1 光罩圖 15 2-5-1-2 光刻微影製程 15 2-5-2 不同粒徑比、流率、流體黏度組合 16 2-5-3 滲透度 (permeability) 量測 16 2-5-4 毛細壓力(capillary pressure)量測 17 2-5-5 動態壓力量測 18 第三章 結果與討論 27 3-1 動態壓力 27 3-1-1 粒徑比對動態壓力之影響 28 3-1-2 流率對動態壓力之影響 29 3-1-3 被驅替流體濃度對動態壓力之影響 29 3-2 黏滯壓降 30 3-2-1 驅替流體之黏滯壓降 30 3-2-2 相對滲透度(relative permeability) 32 3-3 異質孔徑界面壓差 33 3-3-1 粒徑比對異質孔徑界面壓差之影響 34 3-3-2 流率對異質孔徑界面壓差之影響 34 3-3-3 被驅替流體濃度對異質孔徑界面壓差之影響 34 3-3-4 影響異質孔徑界面壓差之參數分析 35 第四章 結論與未來展望 78 4-1 結論 78 4-2 未來展望 78 參考文獻 80

    Al-Housseiny, T. T., Tsai, P. A., & Stone, H. A. (2012). Control of interfacial instabilities using flow geometry. Nature Physics, 8(10), p. 747.
    Cinar, Y.,Neal, P. R., Allinson, W. G., Sayers, J. (2009). Geoengineering and economic assessment of a potential carbon capture and storage site in Southeast Queensland, Australia. Society of Petroleum Engineers, Vol. 12(05), pp. 660-670.
    Dawe, R. A., Caruana, A., & Grattoni, C. A. (2011). Microscale visual study of end effects at permeability discontinuities. Transport in porous media, 86(2), pp. 601-616.
    Ferrari, A., Jimenez‐Martinez, J., Borgne, T. L., Méheust, Y., & Lunati, I. (2014). Challenges in modeling unstable two‐phase flow experiments in porous micromodels. Water Resources Research, 51(3), pp. 1381-1400.
    Furuberg, L., Maløy J. K., Feder J., Intermittent behavior in slow drainage. (1996). Physical review E, Vol. 53, pp. 966-977.
    Hill, S. (1952). Channeling in packed columns. Chemical Engineering Science, 1(6), pp. 247-253.
    Harris Sajjad Rabbani, Dani Or, Ying Liu, Ching-Yao Laic, Nancy B. Lu, Sujit S. Datta, Howard A. Stone,and Nima Shokri. (2018). Suppressing viscous fingering in structured porous media. PNAS Latest Articles.
    Islam, A., Chevalier, S., Salem I. B., Bernabe Y., Juanes R., Sassi, M. (2014). Characterization of the crossover from capillary invasion to viscous fingering to fracturing during drainage in a vertical 2D porous medium." International Journal of Multiphase Flow, Vol. 58, pp. 279-291.
    Jankov, M., Løvoll, G., Knudsen, H. A., Måløy, K. J., Planet, R., Toussaint, R., & Flekkøy, E. G. (2010). Effects of pressure oscillations on drainage in an elastic porous medium. Transport in porous media, 84(3), pp. 569-585.
    Lenormand, R., Touboul, E., & Zarcone, C. (1988). Numerical models and experiments on immiscible displacements in porous media. Journal of fluid mechanics, 189, pp. 165-187.
    Lake, L. W. (1989). Enhanced Oil Recovery. Englewood Cliffs, N.J: Prentice Hall.
    Løvoll, G., Jankov, M., Måløy, K. J., Toussaint, R., Schmittbuhl, J., Schäfer, G., & Méheust, Y. (2010). Influence of viscous fingering on dynamic saturation–pressure curves in porous media. Transport in porous media, 86(1), pp. 305-324.
    Løvoll, G., Méheust, Y., Toussaint, R., Schmittbuhl, J., & Måløy, K. J. (2004). Growth activity during fingering in a porous Hele-Shaw cell. Physical Review E, 70(2), p. 026301.
    Miner, C.S., & Dalton, N.N. (1953). Physical Properties of Glycerine and Its Solution. American Chemical Society Monograph, 117.
    Ohnesorge, W. (1936). Formation of drops by nozzles and the breakup of liquid jets. Z. Angew. Math. Mech., Vol. 16, pp. 355–358.
    Paterson, L. (1981). Radial fingering in a Hele Shaw cell. Journal of Fluid Mechanics, 113, pp. 513-529.
    Pihler-Puzović, D., Illien, P., Heil, M., & Juel, A. (2012). Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Physical review letters, 108(7), p. 074502.
    Rabbani Harris Sajjad., Or Dani., Liu Ying., Lai Ching-Yao., Lu Nancy B., Datta Sujit S., Stone Howard A., & Shokri Nima., (2018). Suppressing viscous fingering in structured porous media. PNAS May 8, 2018, 115 (19), 4833-4838.
    Saffman, P. G., & Taylor, G. (1958). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences(Vol. 245,No. 1242), pp. 312-329.

    Toussaint, R., Løvoll, G., Méheust, Y., Måløy, K. J., & Schmittbuhl, J. (2005). Influence of pore-scale disorder on viscous fingering during drainage. EPL (Europhysics Letters), 71(4), p. 583.
    Toussaint, R., Måløy, K. J., Méheust, Y., Løvoll, G., Jankov, M., Schäfer, G., & Schmittbuhl, J. (2012). Two-phase flow: Structure, upscaling, and consequences for macroscopic transport properties. Vadose Zone Journal, 3.
    Weitz, D. A., Stokes, J. P., Ball, R. C., Kushnick, A. P., (1987). Dynamic capillary pressure in porous media origin of the viscous-fingering length scale. Physical Review Letters, 59, 2967-2970.
    林鴻諭. (2016). 利用異質孔徑界面增強多孔介質內流體驅替效果之研究. 國立中央大學碩士論文.
    邱致衡. (2018). 異質多孔介質指形流之實驗. 國立中央大學碩士論.
    郭旻宜. (2019). 異質多孔介質指形流的動態壓力特性. 國立中央大學碩士論文.

    QR CODE
    :::