| 研究生: |
劉嘉騏 Jia-Chyi Liou |
|---|---|
| 論文名稱: |
應用SSM/I衛星資料分析颱風形成之激發機制 Applying SSM/I data to analyze the formation mechanism of typhoons |
| 指導教授: |
劉振榮
Gin-Rong Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 颱風 、SSM/I 、形成 |
| 外文關鍵詞: | SSM/I, formation, typhoon |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱帶氣旋往往在登陸時,會挾帶大量降雨,造成生命財產的損失,因此對熱帶氣旋的研究不在少數,其中也包括了預測熱帶氣旋的生成。而本研究即是利用SSM/I衛星資料估算環境場提供的能量,來探討影響颱風形成的關鍵。比較相近時間的a)晴空、b)由晴空發展至雲簇、及c)由晴空發展至熱帶氣旋,這三種狀況下,能量隨時間的變化情形,並分析影響颱風生成的激發機制。
結果顯示出,從晴空發展至雲簇,能夠再進一步發展成為颱風的關鍵,在於由降雨提供的潛熱釋放量的大小。若考慮整體海洋-大氣之環境場所提供的總合成能量,當此總合成能量達到本研究分析建立的門檻值,那麼就可以推斷此區域的環境場有足夠的能量支持熱帶雲簇在未來進一步發展成為颱風。
The heavy rainfall from typhoons often causes losses of lives and properties. So, the researches on tropical cyclone are numerous, including the prediction of the tropical cyclone’s formation. In this study, we employ SSM/I data to estimate the total energy provided from the environment to discuss what is the key factor that influences the formation of typhoon. We compare the time variations of the air-sea parameters in three situations (A. clear sky, B. from clear sky develops to cloud cluster, C. from clear sky develops to tropical cyclone) starting in the close timing, and analyze the main mechanism which influences the genesis of typhoon.
The result shows that the magnitude of latent heat release is very important for typhoon developed from cloud cluster. If we consider the total energy provided from the entire air-sea environment, we can suggest that the cloud cluster owning enough energy to form typhoon in the future when the total energy is larger than the threshold set up in our study.
曾忠一,1988:大氣衛星遙測學。渤海堂出版社,630 頁。
黃曉薇,2000:應用SSM/I 衛星資料於西北太平洋颱風特性之分析。國立中央大學大氣物理研究所碩士論文,95 頁。
蔡文元,1996:SSM/I 資料於颱風強度估算和降雨特性分析上之應用。國立中央大學大氣物理研究所碩士論文,69 頁。
劉崇治與劉振榮,2000:應用衛星資料在梅雨季海上中尺度對流系統生成前兆之初步探討。大氣科學,第二十八期,第四號,317-341頁。
項義華,2002:應用SSM/I 衛星資料分析桃芝颱風與納莉颱風之降雨及海氣參數變化,92 頁。
Alliss, R. L., S. Raman, and S. W. Chang, 1992: Special Sensor Microwave/Imager (SSM/I) observations of Hurricane Hugo (1989). Mon. Wea. Rev., 120, 2723–2737.
Chang, C. P., C. H. Liu, and H. C. Kuo, 2003: Typhoon Vamei: An equatorial topical cyclone formation. Geo. Res. Let., 30, No.3,50-1-50-4.
Chiu, L.S., G.R. North, D.A. Short, and A. McConnell, 1990: Rain estimation from satellite: Effect of finite field of view. J. Geophys. Res., 95, 2177-2185.
Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430.
Dvorak, V. F. (1984), Tropical cyclone intensity analysis using satellite data, NOAA Tech. Rep. NESDIS 11, 47 pp., NOAA/NESDIS, Washington, D. C.
Goni, G. J., and J. A. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Trans. Amer. Geophys. Union, 84, 573–580.
Goodberlet, M. A., C. T. Swift, and J. C. Wilkerson, 1989: Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J.Geophys. Res., 94, C10, 14547-14555.
Goodberlet, M. A., and C. T. Swift, 1992:Improved retrievals from the DMSP wind speed algorithm under adverse weather conditions. IEEE Trans. Geosci. Remote Sensing, 30, 1076-1077.
Gray, W. M., 1968: Global view of the origin of the tropical disturbances and storm. Mon. Wea. Rev., 96, 669-700.
Katsaros, K. B., E. B. Forde, P. Chang and W. T. Liu , 2001: QuikSCAT facilitates early identification of tropical depressions in 1999 hurricane season. Geophys. Res. Lett., 28, 1043–1046.
Kurihara, Y., and R. E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci., 31, 893–919.
Lin, I.-I., C.-C. Wu, K. Emanuel, I.-H. Lee, C.-R. Wu and I.-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, submitted.
Liu, G.-R., C.-C. Liu, and T.-H. Kuo, 2001: A contrast and comparison of near-sea surface air temperature/humidity from GMS and SSM/I data with an improved algorithm. IEEE Trans. Geosci. Remote Sensing, 39, 2148-2157.
Liu, G.-R., C.-C. Liu, and T.-H. Kuo, 2002: A satellite-derived objective potential index for MCS development during the Mei-Yu preriod. J. Meteor. Soc. Japan., 80, 503-517.
Rao, G. V., and P. D. MacArthur, 1994: The SSM/I estimated rainfall amounts of tropical cyclones and their potential in predicting the cyclone intensity changes. Mon. Wea. Rev., 122, 1568–1574.
Rodgers, E. B., and R. F. Adler, 1981: Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon. Wea. Rev., 109, 506–521.
Rodgers, E. B., and H. F. Pierce, 1995: A satellite observational study of precipitation characteristics in Western North Pacific tropical cyclones. J. Appl. Meteor., 34, 2587-2599.
Rodgers, E. B., J. Halverson, J. Simpson, and H. Pierce, 2000: Environmental forcing of Supertyphoon Paka’s (1997) latent heat structure. J. Appl. Meteor., 39, 1983–2006.
Rosenthal, S. L., 1978: Numerical simulation of a tropical cyclone development with latent heat release by the resolvable scales. I: Model description and preliminary results. J. Atmos. Sci., 35, 258–271.
Sharp, B. J., M. A. Bourassa, and J. J. O’Brien, 2002: Early detection of tropical cyclones using seawinds-derived vorticity. Bull. Am. Met. Soc., 83, 879–889.
Venkatesh, T. N., J. Mathew, 2004: Prediction of tropical cyclone genesis using a vortex merger index. Geophys. Res. Lett., 31, 4, L04105.
Yueh, S. H., B. W. Stiles, and W. T. Liu, 2003: QuikSCAT wind retrievals for tropical cyclones. IEEE Trans. Geosci. Remote Sens., 41, 2616–2628.