跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉世博
She-Bo Yeh
論文名稱: 高位移敏感度之全像多工光學儲存之研究
指導教授: 孫慶成
Ching-cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 88
語文別: 中文
論文頁數: 90
中文關鍵詞: 位移敏感度位移多工體積全像光折變效應
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的是研究位移多工之位移敏感度,位移多工有許多種方式,我們是以球面波為參考光,平面波為訊號光,比較二道光夾角90度及180度之位移敏感度。
    由於夾角90度架構的位移敏感度較高,因此針對90度架構的橫向及縱向位移敏感度再做進一步的研究,並發現當參考光之點光源斜向入射,對橫向及縱向位移敏感度會有所影響,我們依據位移敏感度影響的程度設計一點光源陣列,將可免除位移多工所必須之機械位移。
    在實驗過程中,我們遇到了齒輪間隙及實驗數據歸一化的問題,因此我們針對這二個問題設計了理想的實驗步驟與分析方法,以解決在實驗上所遇問題。


    摘要..........................I 目錄..........................II 圖索引..........................IV 表索引..........................X 第一章 導論..........................1 1-1 本文緣起..............................1 1-2 論文大綱與安 排............................1 第二章 體積全像..............................3 2-1 光折變效應..............................3 2-2 LiNbO3之光折變嚮應.......................7 2-3 體積全像................................10 2-4 布拉格不匹配............................18 2-5 多工儲存之機制..........................20 第三章 以球面波為參考光之位移多工................24 3-1 相位疊加法......................24 3-........180o 之相位疊加 法...........................31 3-3 90o 之相位疊加法...................33 第四章 90o 架構之3D位移敏感度...........36 4-1 橫向位移敏感度....................36 4-2 縱向位移敏感度....................37 4-3 斜向入射位移敏感度................38 4-4 最佳化設計.......................41 第五章 實驗..........................44 5-1 實驗架構.......................44 5-2 實驗步驟及技巧....................44 5-3 位移平台之檢測.....................48 5-4 繞射效率之歸一化....................57 5-5 實驗結果........................59 第六章 結論..........................83 附錄A.......................84 參考資料.......................86 中英文名詞對照表....................89

    [1] J. P. Huignard and P. Gunter , Photorefractive Materials and Their Applications:I . Fundamental Phenomena;Photorefractive Materials and Their Applications:II . Applications, Springer-Verlag , New York, 1988, 1989.
    [2] P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang and M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 4, 328 (1989).
    [3] C. C. Sun, M. W. Chang and K. Y. Hsu, “Optical information processing by using anisotropic diffraction in BaTiO3,” Inter. J. Optoelectronics 11, 413 (1997).
    [4] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393 (1963).
    [5] F. H. Mok, “Angle-multiplexed volume hologram,” Opt. Lett. 17, 1471 (1992).
    [6] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471 (1992).
    [7] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171 (1991).
    [8] C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, and M. W. Chang, “Random phase-coded multiplexing of hologram volumes using ground glass,” Optical. and Quantum Electonics 28, 1551 (1996).
    [9] K. Curtis, A. Pu and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993 (1994).
    [10] D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782 (1995).
    [11] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J. J. Levinstein and K. Nassau, “Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72 (1966).
    [12] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. Lett. 44,948 (1984)
    [13] L. Young, W. K. Y. Wing, M. L. W. Thewait and W. D. Crnish, “Theory of formation of phase holograms in lithium niobate,” Appl. Phys. Lett. 24, 264 (1974).
    [14] G. A. Alphonse, R. C. Alig, O. L. Staebler and W. Phillips, “Time dependent characteristics of photo-induced space charge field and phase holograms in lithium niobate and other photorefractive materials,” RCA Review 36, 213 (1975).
    [15] D. VonderLinde and A. M. Glass, “Photorefractive effects for reversable holographic storage of information,” J. Appl. Phys. 8, 85 (1975).
    [16] D. M. Kim, R. R. Shah, T. A. Rabson and F. K. Tittel, “Nonlinear dynamic theory for photorefractive phase hologram formation,” Appl. Phys. Lett. 28, 338 (1976).
    [17] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
    [18] D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182 (1975).
    [19] P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electronics 25 , 484 (1989).
    [20] B. T. Matthias and J. P. Remeika, Phys. Rev. 76, 1886 (1949).
    [21] A. A. Ballman, J. Am. Ceram. Soc. 48, 112 (1965).
    [22] M. V. Hobdem and J. Warner, Phys. Lett. 22, 243 (1966).
    [23] D. Gabor, “A new microscope principle,” Nature 161, 777 , (1948).
    [24] P. Yeh, Introduction to Photorefractive Nonlinear Optics, chapter 2.
    [25] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
    [26] W. R. Klein, “Theoretical Efficiency of Bragg Devices,” Proc. IEEE 54, 803 (1996).
    [27] C. C. Sun, W.C. Su, B. Wang, Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Comm. 175 67 (2000).
    [28] 林祐年,體積光柵應用於微物3D掃描之研究,國立中央大學光電所碩士論文,中華民國八十九年.
    [29] C. C. Sun, W. C. Su, Y.-N. Lin, S. P. Yeh, and B. Wang, “3-dimensional random phase encryption in a volume hologram,” Proc. SPIE 4110 (2000).

    QR CODE
    :::