跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊智量
Chih-Liang Chuang
論文名稱: 體積守恆的變形模塑應用於腹腔鏡手術模擬
Volume-preserving Deformation Modeling for Laparoscopic Surgical Simulation
指導教授: 曾定章
Din-chang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 80
中文關鍵詞: 腹腔鏡手術模擬體積守恆變形模塑混合式物理變形模塑自由框架變形模塑
外文關鍵詞: free-form deformation, hybrid physical-based deformation, laparoscopic surgical simulation, volume-preservi
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文的研究中,我們提出體積守恆的變形模塑(volume-preserving free-from deformation modeling) 技術應用於腹腔鏡手術模擬系統中。我們所提出的系統包括下列五個部份: 即時的物理變形模塑、體積守恆的變形、力回饋、快速的碰撞偵測、及手術動作。為了使器官快速地變形,我們提出了混合式物理變形模塑 (hybrid physical-based deformation modeling)。雖然混合式物理變形模塑提供了快速和物理的變形,但變形後的體積並不守恆。因此我們結合了體積守恆變形模塑技術到混合式變形模塑中,使得變形後的體積能夠守恆,而有更逼真的視覺效果。為了在不同效能的電腦上都能有即時的變形效果,使用者可以藉由調整體積守恆的參數來達到即時的變形效果。


    In this paper, we propose a volume-preserving free-form deformation modeling technology for a laparoscopic surgery simulation system. The proposed system consists of five components: (i) real-time deformation, (ii) volume-preserving deformation, (iii) efficient collision detection, (iv) force feedback, and (v) surgical operations. In real-time deformation, the proposed hybrid physical-based deformation modeling technique (HPDM) was used to simulate the deformation of human organs. The HPDM exhibits high speed and physical deformation without preserving the volume of a model. The volume-preserving free-form deformation modeling technique was associated with the HPDM to preserve the volume of the deformed model for realistic visualization. To fit a real-time deformation on different-performance computation platforms, a user can adjust the parameters of volume-preserving free-form deformation.

    摘要I 誌謝II 目錄III 第一章緒論一 第二章相關研究二 第三章混合式物理變形模塑三 第四章體積守恆變形模塑四 第五章手術模擬環境的整合五 第六章實驗與討論六 第七章結論七 附錄 英文版論文八

    [1] Aubert, F. and D. Bechmann, “Volume-preserving space deformation,” Computer & Graphics, Vol.21, No.5, pp.625-639, 1997.
    [2] Basdogan, C., C.-H. Ho, M. A. Srinivasan, S. D. Small, and S. L. Dawson, “Force interactions in laparoscopic simulations: haptic rendering of soft tissues,” in Proc. of Conf. on Medicine Meets Virtual Reality, San Diego, CA, Jan.19-22, 1998, pp.385-391.
    [3] Bechmann, D., “Space deformation models survey,” Computer & Graphics, Vol.18, No.4, pp.571-586, 1994.
    [4] Bielser, D., V. A. Maiwald, M. H. Gross, Interactive Cuts Through 3-dimensional Soft Tissue, Technical Report 309, ETH Zürich, Institute of Scientific Computing, Nov. 1998.
    [5] Bro-Nielsen, M., “Finite element modeling in surgery simulation,” in Proc. IEEE Special Issue on Virtual & Augmented Reality in Medicine, Vol.86, No.3, pp.490-503, 1998.
    [6] Chen, Y., Q.-H. Zhu, and K. Arie, “Physically based animation of volumetric objects,” in Proc. IEEE Computer Animation, Philadelphia, Jun.8-10, 1998, pp.154-160.
    [7] Coquillart, S., “Extended free-form deformation: a sculpturing tool for 3D geometric modeling,” in Proc. SIGGRAPH’90, Vol.24, No.4, Dallas, TX, Aug.6-10, 1990, pp.187-196.
    [8] Cotin, S., H. Delingette, and N. Ayache, Efficient Linear Elastic Models of Soft Tissues for Real-time Surgery Simulation, Technique Report TR-98-3510, Institut National de Recherche en Informatique et en Automatique (INRIA), 1998.
    [9] Cover, S. A., N. F. Ezquerra, J. F. O’Brien, R. Rowe, J. Gadacz, and E. Palm, “Interactively deformable models for surgery simulation,” IEEE Computer Graphics & Applications, Vol.13, No.6, pp.68-75, 1993.
    [10] Delingette, H., “Toward realistic soft-tissue modeling in medical simulation,” in Proc. IEEE Special Issue on Virtual & Augmented Reality in Medicine, Vol.86, No.3, pp.512-523, 1998.
    [11] Desbrun, M., P. Schröder, A. Barr, “Interactive animation of structured deformable objects, ” in Proc. Graphics Interface ''99, Kingston, Canada, Jun.2-4, 1999, pp.1-8.
    [12] Gibson, S. F. F. and B. Mirtich, A Survery of Deformable Modeling in Computer Graphics, Technique Report TR-97-19, Mitsubishi Electric Research Laboratory, 1997.
    [13] Guan, Z., J. Ling, N. Tao, X. Ping, and T. Rongxi, “Study and application of physics-based deformable curves and surfaces,” Computer & Graphics, Vol.21, No.4, pp.305-313, 1997.
    [14] Gudukbay, U., B. Ozguc, and Y. Tokad, “A spring force formulation for elastically deformable models,” Computer & Graphics, Vol.21, No.3, pp.335-346, 1997.
    [15] Hirota, G., R. Maheshwari, and M.-C. Lin, “Fast volume-preserving free form deformation using multi-level optimization,” in Proc. of the Fifth Symp. on Solid Modeling and Application, Ann Arbor, MI, June 8-11, 1999, pp.234-245.
    [16] Hsu, W. M., J. F. Hughes, and H. Kaufman, “Direct manipulation of free-form deformations,” in Proc. SIGGRAPH’92, Vol.26, No.2, Chicago, IL, Jul.26-31, 1992, pp.177-184.
    [17] Kuhn, C., U. Kuhnapfel, H.-G. Krumm, and B. Neisius, “A ‘virtual reality’ based training system for minimally invasive surgery,” in Proc. Computer Assisted Radiology (CAR’96), Paris, Jun.26-29, 1996, pp.764-769.
    [18] Kuhnapfel, U. G. and B. Neisius, “CAD-based graphical computer simulation in endoscopic surgery,” Endoscopic Surgery and Allied Technologies, Vol.1, No.2, pp.181-184, 1993.
    [19] Kühnapfel, U., H. K. Çakmak, H. Maaß, “3D Modeling for Endoscopic Surgery,“ in Proc. IEEE Symposium on Simulation, Delft University, Delft, NL, Oct. 13, 1999, pp.22-32.
    [20] Louchet, J. , X. Provot, D. Corchemore, “Evolutionary identification of cloth animation models, “ in Eurographics Workshop on Computer Animation and Simulation, Maastricht, Netherlands, Sep.2-3, 1995, pp.44-54.
    [21] Meseure, P. and C. Chaillou, “Deformable body simulation with adaptative subdivision and cuttings,” in Proc. WSCG’97, Plzen, Czech Republic, Feb.10-14, 1997, pp.361-370.
    [22] Ng, H. N. and R. L. Grimsdate., “Computer graphics techniques for modeling cloth,” IEEE Computer Graphics & Applications, Vol.16, No.5, pp.28-41, 1996.
    [23] Provot, X., “Collision and self-collision handling in cloth model dedicated to design garments, “ in Eurographics Workshop on Computer Animation and Simulation, Budapest, Hungary, Sep.2-3, 1997, pp.177-189.
    [24] Provot, X., “Deformation constraints in a mass-spring model to describe rigid cloth behavior,” in Proc. Graphics Interface, Quebec City, Canada, May17-19, 1995, pp.147-154.
    [25] Qin, H. and D. Terzopoulos, “Dynamic NURBS swung surfaces for physics-based shape design,” Computer-Aided Design, Vol.27, No.2, pp.111-127, 1995.
    [26] Rappoport, A., A. Sheffer, and M. Bercovier, “Volume-preserving free-form solids,” IEEE Trans. on Visualization & Computer Graphics, Vol.2, No.1, pp.19-27, 1996.
    [27] Sederberg, T. W. and S. R. Parry, “Free-form deformation of solid geometric models,” in Proc. SIGGRAPH’86, Vol.20, No.4, Dallas, TX, Aug.18-22, 1986, pp.151-160.
    [28] Terzopoulos, D. and H. Qin, “Dynamic NURBS with geometric constraints for interactive sculpting,” ACM Trans. on Graphics, Vol.13, No.2, pp.103-136, 1994.
    [29] Terzopoulos, D., J. Platt, A. Barr, and K. Fleischer, “Elastically deformable models,” in Proc. SIGGRAPH’87, Vol.21, No.4, Anaheim, CA, Jul.27-31, 1987, pp.205-214.
    [30] Volino, P. , M. Courchesne, and N. M. Thalmann, “Versatile and efficient techniques for simulating cloth and other deformable objects,” in Proc. SIGGRAPH’95, Vol.29, pp.137-144, 1995.

    QR CODE
    :::