| 研究生: |
黃守謙 Shou-chien Huang |
|---|---|
| 論文名稱: |
異質接面雙極性電晶體高頻雜訊特性與模型 High Frequency Noise Characteristics and Modeling of Heterojunction Bipolar Transistors |
| 指導教授: |
辛裕明
Yue-ming Hsin |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 砷化鎵 、雜訊模型 、雜訊 、異質接面雙極性電晶體 |
| 外文關鍵詞: | HBT, noise, noise model, GaAs, InGaP, ac current crowding |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文一開始針對多種不同基極(base)尺寸的磷化銦鎵/砷化鎵 (InGaP/GaAs)異質接面雙載子電晶體(Heterojunction Bipolar Transistor;簡稱HBT),就直流(dc)、交流(ac)和高頻雜訊的特性,做一完整的測量分析。根據直流和交流測量結果的討論分析,發覺不同基極尺寸的電晶體間的高頻雜訊的差異,與交流電流聚集效應(ac current crowding effect)有關。
直流測量結果顯示基極長度的改變會嚴重影響電晶體直流特性表現,但基極寬度的改變對電晶體直流特性表現則不明顯。在交流方面,電流增益截止頻率(fT)不受基極長度和寬度改變的影響,因為減少的電容和增加的電阻對fT的影響,彼此相互抵銷。但是最大震盪頻率(fmax)則嚴重受到基極長度和寬度改變的影響,因為基極電阻和基極集極間電容的乘積(RB×CBC)大為增加。在雜訊方面,發現量到的最小雜訊指數(NFmin)的數值隨著基極長度和寬度的減少,其在高頻區域的增量也跟著遞減,這是因為交流電流聚集效應的關係。越高的基極阻抗,隨著操作頻率的增加遞減的越多,因此使得NFmin在高頻時的增量遞減。
接著我們建立一個新的高頻雜訊模型,這新模型把基極接觸電容和交流電流聚集效應對電晶體雜訊特性的影響考慮在內,接著推導出新的雜訊參數表示式。根據新的雜訊參數表示式計算出來的結果,和前面測量到的不同基極長度和寬度的電晶體雜訊特性相比較,兩者相當的吻合,可以清楚描述出交流電流聚集效應的影響。除此之外,藉著這個新雜訊模型,我們也觀察到只有基極電組很大的時候,基極接觸電容對高頻雜訊的影響才會較明顯。
In this dissertation, the dc, ac and noise characteristics of InGaP/GaAs HBTs with various base contact size are investigated. According to the discussions of dc and ac measurement results, the difference of noise performance between the HBTs with various base contact size can be attributed to the ac current crowding effect. Besides, we proposed new analytical expressions for four noise parameters of InGaP/GaAs HBT based on the complete small-signal equivalent circuit, which takes base contact capacitance and ac current crowding effect into account. Consequently, this new noise model shows excellent experimental agreement. It can describe the noise behavior of InGaP/GaAs HBT at high frequencies accurately including ac current crowding effect.
In chapter 1, the overview of the HBTs has been introduced briefly. The origin of dc and ac emitter current crowding of the HBTs and the introduction of base contact impedance are also described. Besides, the overview of noise characteristics of the HBTs is described as well. In final, the noisy circuit analysis procedure is introduced for the noise parameters expression derivation of HBTs in Chapter 3.
The dependence of dc, ac and noise characteristics of InGaP/GaAs HBTs on the base contact size is presented in Chapter 2. The measured results show that the dc performances are not significantly dependent on WB but on LB. In the ac performances, the fT is not apparently dependent on WB and LB but the fmax is significantly degraded with reduced WB and LB due to the increased RB×CBC product. In the noise performance, the measured NFmin values increase slowly with reduced WB and LB at high frequency ranges due to ac current crowding effect. In the studied devices with fT of ~35 GHz, the measured minimum noise figure (NFmin) increases slowly with reduced base contact width (WB) while the operating frequency is over than 10 GHz. The corresponding decrease in noise resistance (Rn) of HBTs while increasing operating frequency indicates a significant decrease in the base resistance (RB) from the ac current crowding effect. The NFmin of device with WB of 2.0 μm is lowest at medium frequencies but higher than that of devices with WB < 2.0 μm at high frequencies. Based on the experimental results, the ac current crowding effect decelerates the increase in the NFmin at high frequencies.
In Chapter 3, a complete HBT high frequency noise model including the influences of the base contact capacitance and ac current crowding effect. Based on the proposed noise model, new expressions for the noise parameters of InGaP/GaAs HBTs are derived to describe the high frequency noise behavior in the presence of ac current crowding effect. The validity of the new noise model is presented by analyzing the four noise parameters of the HBTs with various base contact size. Good agreement is obtained between measured and calculated data for HBTs with various base contact size. The effect of ac current crowding on high frequency noise is well described. For device with high equivalent noise resistance (Rn), the proposed noise model with frequency dependent intrinsic base thermal noise describes the drop of Rn at high frequencies accurately. In addition, the base contact capacitance (CB) shows its significant influence on the noise parameters only when the base resistance is high.
However, current crowding effect is distributive. Therefore, the method in the noise model that we use Cbi//Rbi to describe the frequency dependent ac current crowding effect may not appropriate. Therefore, it still needs better method to describe the distributive base resistance to meet physical meaning.
Chapter 1
[1] K. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Phys. Rev., vol. 71, pp. 230, 1948.
[2] W. Shockley, “The theory of p-n junction in semiconductor and p-n junction transistor”, Bell syst. Tech. J. vol. 28, pp. 435, 1949.
[3] W. Shockly,U.S. Patent NO. 2569347, 1951.
[4] H. Kroemer., “ Theory of a Wide-Gap Emitter for Transistors,˝ proc. IRE, vol. 45 , pp.1535, 1957..
[5] H. T. Yuan, W. V. McLevige, and H. D. Shih, “ GaAs Bipolar Digital Integrated Circuit”, in N. G. Einspruch and W. R. Wisseman (eds.), VLSI Electrics icrostructure Science, vol. 11, pp. 173-213, Academic Press, Orlando, 1985.
[6] R. Nottenburg, J. C. Bischoff, M. B. Panish, and H. Temkin, “High-speed InGaAs(P)/InP double-heterostructure bipolar transistors”, IEEE Electron Device Lett., vol. 8, pp. 282-284, 1987.
[7] W. Snodgrass, W. Hafez, N. Harff, and M. Feng, "Pseudomorphic InP/InGaAs Heterojunction Bipolar Transistors (PHBTs) Experimentally Demonstrating fT = 765 GHz at 25°C Increasing to fT = 845 GHz at -55°C", IEEE Indium Phosphide and Related Materials, pp. 1-4, 2006.
[8] F. Schwierz, and J. J. Liou, “RF transistors: Recent developments and roadmap toward terahertz applications,” Solid-State Electronics, vol. 51, pp. 1079-1091, 2007.
[9] Z. Griffith, E. Lind, M. J.W. Rodwell, X. M. Fangt, D. Loubychevt, Y. Wut, J. M. Fastenaut, and A. W.K. Liut, “Sub-300 nm InGaAs/InP Type-I DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fmax and 416 GHz fT,” IEEE Indium Phosphide and Related Materials, pp. 403-406, 2007.
[10] S. Reed, Y. Wang, F. Huin, and S. Toutain, “HBT Power Amplifier With Dynamic Base Biasing for 3G Handset Applications,” IEEE Microw. Wireless Compon. Lett., vol. 14, pp. 380-382, Aug. 2004.
[11] T. Iwai, K. Kobayashi, Y. Nakasha, T. Miyashita, S. Ohara, and K. Joshin, “42% High-Efficiency Two-Stage HBT Power-Amplifier MMIC for W-CDMA Cellular Phone Systems”, IEEE Trans. Microwave Theory and Tech., vol. 48, pp. 2567-2572, Dec. 2000.
[12] J.H. Kim, J.H. Kim, Y.S. Noh, and C.S. Park, “ A Low Quiescent Current 3.3 V operation Linear MMIC Power Amplifier for 5 GHz WLNA Application”, IEEE Microwave Symp., pp. 867-870, 2003.
[13] K. Nellis and P. J. Zampardi, “A Comparison of Linear Handset Power Amplifiers in Different Bipolar Technologies,” IEEE J. Solid-State Circuits, vol. 39, pp.1746-1754, Oct. 2004.
[14] S.M. SZE, “High-Speed Semiconductor Devices”, Wiley-Interscience, 1990.
[15] D. Caffin, A.-M. Duchenois, F. Heliot, C. Besombes, J.-L. Benchimol, and P. Launay, “Base-Collector Leakage Currents in InP/InGaAs Double Heterojunction Bipolar Transistorss”, IEEE Trans. Electron Devices, vol. 44, pp. 930-936, June 1997.
[16] W. Liu, Handbook of III–V Heterojunction Bipolar Transistors. New York: Wiley, 1998.
[17] J.R. Hauser, “The effects of distributed base potential on emitter-current injection density and effective base resistance for stripe transistor geometries,” IEEE Trans. Electron Devices, Vol. 11, no. 5, pp. 238-242, May 1964.
[18] R. L. Pritchard, Electrical Characteristics of Transistors. New York: McGraw-Hill, 1967.
[19] H.-S. Rhee, S. Lee and B.-R. Kim, “D.c. and a.c. current crowding effects model analysis in bipolar junction transistors using a new extraction method,” Solid-State Electron., vol. 38, no. 1, pp. 31-35, Jan. 1995.
[20] W.B. Tang, C.M. Wang and Y.M. Hsin, “A complete small-signal equivalent circuit model of InGaP/GaAs HBT including base contact impedance and ac current crowding effect,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 10, pp. 3641-3647, Oct. 2006.
[21] Information About the Most Recent Model Descriptions, Source Code, and Documentation. [Online]. Available: http://www.semiconductors. Philips.com / Philips_Models
[22] H.H. Berger, “Models for contacts to planar devices,” Solid-State Electron., vol. 15, pp.145-147, June. 1972.
[23] D. Costa, W. Liu, and J.S. Harris, Jr., “Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit,” IEEE Trans. Electron Devices, vol. 38, pp. 2018–2024, Sept. 1991.
[24] J.M.M. Rios, “A self-consistent method for complete small-signal parameter extraction of InP-based heterojunction bipolar transistors,” IEEE Trans. Microwave Theory Tech., vol. 45, pp.39- 45, Jan. 1997.
[25] R. Plana, and L. Escotte,” Noise properties of micro-wave heterojunction bipolar transistors,” 1997 21st International Conference on Microelectronic Proceedings., vol. 1, pp.215-222 ,Sept. 1997
[26] Y.K. Chen, D.A. Humphrey, L. Fan, J. Lin, R.A. Hamm, D. Sivco, A.Y. Cho, and A. Tate, ” Noise characteristics of InP-based HBTs,” Conference Proceedings. Indium Phosphide and Related Materials, pp.851-856, May 1995.
[27] P. J. Fish, Electronic Noise and Low Noise Design. New York McGraw-Hill, 1994.
[28] J.J. Liou, T.J. Jenkins, L.L. Liou, R. Neidhard, D.W. Barlage, R. Fitch, J.P. Barrette, M. Mack, C.A. Bozada, R.H.Y. Lee, R.W. Dettmer, and J.S. Sewell,” Bias, frequency, and area dependencies of high frequency noise in AlGaAs/GaAs HBT''s, “ IEEE Trans. Electron Devices, vol. 43, pp.116-122, Jan.1996.
[29] M. Rudolph, R. Doerner, L. Klapproth, and P. Heymann, “An HBT noise model valid up to transit frequency, “ IEEE Trans. Electron Devices, vol. 20, pp.24-26 Jan. 1999,
[30] U. Basaran, N. Wieser, G. Feiler, and M. Berroth,” Small-signal and high-frequency noise modeling of SiGe HBTs,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 919- 928, March 2005.
[31] L. Escotte, J.-P. Roux, R. Plana, J. Graffeuil, and A. Gruhle, “Noise modeling of microwave heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, no. 5, pp.883-889, May 1995.
[32] D. Costa and J. S. Harris Jr., “Low-frequency noise properties of N-p-n AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 39, p. 2383, 1992.
[33] W.H. Fonger, “Noise in transistor”, in Noise in Electron Devices, Smullin and Hans, eds., New York: John Wiley and Sons, pp. 365-381,1959
[34] A. McWhorter, “1/f noise and germanium surface properties,” in Semiconductor Surface Physics. Philadelphia, PA: Univ. of Pennsylvania Press, pp. 207–208. 1957.
[35] Yan Cui, Guofu Nui, Harame, D.L.;” An examination of bipolar transistor noise modelling and noise physics using microscopic noise simulation,” Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, Sept. 2003 pp.225-228, 2003.
[36] A. Van der Ziel, “Proposed discrimination between 1/ f noise sources in transistors,” Solid State Electronics, vol. 25, no. 2, pp. 141-143, 1982.
[37] J.-H. Shin, J. Kim, Y. Chung, J. Lee, Y. Suh, K.H. Ahn, and B. Kim,” Low-frequency noise characterization of self-aligned AlGaAs-GaAs heterojunction bipolar transistors with a noise corner frequency below 3 kHz,” IEEE Trans. Microwave Theory Tech., vol.46, no.11, pp.1604-1613, Nov. 1998.
[38] RJ. Hawkins, “Limitations of Nielsen’s and related noise equations applied to microwave bipolar transistors, and a new expression for the frequency and current dependent noise figure,” Solid-State Electronics , vol. 20, pp. 191-196.1977.
[39] Y.K. Chen, R.N. Nottenburg, M.B. Panish, R. A. Ha”, and D.A. Humphrey, “Microwave noise performance of InP/InGaAs heterostructure bipolar transistors,” IEEE Electron Device Lett., vol. 10, pp. 470-472, 1989.
[40] G. Niu, J.D. Cressler, Z. Shiming, W.E. Ansley, C.S. Webster, and D.L Harame, “ An unified approach to RF and microwave noise parameter modeling in bipolar transistors,” IEEE Trans. Electron Devices, vol. 48, no.11, pp. 2568-2574, Nov. 2001.
[41] A. van der Ziel, “Theory of shot noise in junction diodes and junction transistors,” Proc. IRE, vol. 43, pp. 1639-1646, Nov. 1955.
[42] G. Niu, ”Noise in SiGe HBT RF technology: physics, modeling, and circuit implications,” Proceedings of the IEEE, vol. 93, no. 9, pp.1583-1597, Sept. 2005.
[43] G. Jianjun, L. Xiuping, W. Hong, and G. Boeck, ”Microwave noise modeling for InP-InGaAs HBTs,” IEEE Trans. Microwave Theory Tech., vol.52, no.4, pp.1264-1272, Apr. 2004.
[44] H. A. Haus and R. B. Adler, “Circuit Theory of Linear noisy Networks.” New York: Wiley, 1959.
[45] H. Hillbrand, and P. Russer,” An efficient method for computer aided noise analysis of linear amplifier networks,” IEEE Trans. Circuits and Systems, vol.23, no.4, pp.235-238, Apr. 1976.
[46] R.A. Pucel, and U.L. Rohde, “An exact expression for the noise resistance Rn for the Hawkins bipolar noise model,” IEEE Microwave and Guided Wave Letters, vol. 3, no.2, pp.35-37, Feb. 1993.
[47] C. Giuseppe, and M. Sannino, ” Computer-Aided Determination of Microwave Two-Port Noise Parameters,” IEEE Trans. Microwave Theory Tech., vol. 26, no.9, pp. 639-642, Sep. 1978.
Chapter 2
[1] M.E. Kim, A.K. Oki, G.M. Gorman, D.K. Umemoto, and J.B. Camou, ”GaAs heterojunction bipolar transistor device and IC technology for high-performance analog and microwave applications,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 9, pp. 1286-1303, Sept. 1989
[2] B. Bayraktaroglu, ”GaAs HBT''s for microwave integrated circuits,” Proc. IEEE, vol. 81, no. 12, pp. 1762-1785, Dec. 1993.
[3] F. Ali, A. Gupta and A. Higgins, “Advances in GaAs HBT power amplifiers for cellular phones and military applications,” in IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp., 1996, pp. 61-66.
[4] P. Asbeck, “III-V HBTs for microwave applications: technology status and modeling challenges,” in Proc. Bipolar/BiCMOS Circuits and Technology Meeting, 2000, pp. 52-57.
[5] A.G. Metzger, P.J. Zampardi, M. Sun, J. Li, C. Cismaru, L. Rushing, R. Ramanathan and K. Weller, “An InGaP/GaAs merged HBT-FET (BiFET) technology and applications to the design of handset power amplifiers,” in IEEE Compound Semiconductor Integrated Circuit Symp., 2006, pp. 175–178.
[6] W. Snodgrass, B.-R. Wu, W. Hafez, K.-Y. Cheng, and M. Feng, ”Graded base type-II InP/GaAsSb DHBT with fT = 475 GHz,” IEEE Electron Device Lett., vol. 27, no. 2, pp. 84–86, Feb. 2006.
[7] T. Oka, K. Hirata, H. Suzuki, K. Ouchi, H. Uchiyama, T. Taniguchi, K. Mochizuki, and T. Nakamura, “High-speed small-scale InGaP/GaAs HBT technology and its application to integrated circuits,” IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2625–2630, Nov. 2001.
[8] K. Washio, E. Ohue, R. Hayami, A. Kodama, H. Shimamoto, M. Miura, K. Oda, I. Suzumura, T. Tominari, and T. Hashimoto, “High-speed scaled-down self-aligned SEG SiGe HBTs,” IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2417–2424, Dec. 2003.
[9] W. Kim, K. Lee, M. Chung, J. Kang, and B. Kim, “High-speed AlGaAs/GaAs HBTs with reduced base-collector capacitance,” IET Electron. Lett., vol. 37, no. 20, pp. 1259-1261, Sept. 2001.
[10] G. Blasquez, J. Caminade, and K. M. van Vliet, “An accurate analysis of noise in rectangular bipolar transistors including current crowding,” Solid-State Electron., vol. 23, no. 5, pp. 423-431, May 1980.
[11] J.C.J. Paasschens, “Compact modeling of the noise of a bipolar transistor under DC and AC current crowding conditions,” IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1483–1495, Sept. 2004.
[12] W.-K. Lee, T.Y. Man, P.K.T. Mok, P.K. Ko, and M. Chan, “The impact of the AC current crowding effect on BJT RF noise modeling,” in Conf. IEEE Electron Devices and Solid-State Circuits, 2003, pp. 327-330.
[13] B.S. Wu, and F.A. Lindholm, “Non-quasi-static models including all injection levels and DC, AC, and transient emitter crowding in bipolar transistors,” IEEE Trans. Electron Devices, vol. 38, no. 1, pp. 167–177, Jan. 1991.
[14] H.-S. Rhee, S. Lee and B.-R. Kim, “D.c. and a.c. current crowding effects model analysis in bipolar junction transistors using a new extraction method,” Solid-State Electron., vol. 38, no. 1, pp. 31-35, Jan. 1995.
[15] W.B. Tang, C.M. Wang and Y.M. Hsin, “A complete small-signal equivalent circuit model of InGaP/GaAs HBT including base contact impedance and ac current crowding effect,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 10, pp. 3641-3647, Oct. 2006.
[16] W.-S. Lee, D. Ueda, T. Ma, Y.-C. Pao, and J.S. Harris,JR., “Effect of emitter-base spacing on the current gain of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 10, no. 5, pp. 200-202, May 1989.
[17] W. Liu, Handbook of III–V Heterojunction Bipolar Transistors. New York: Wiley, 1998.
[18] W. Liu, and J.S. Harris,JR., “Dependence of base crowding effect on base doping and thickness for npn AlGaAs/GaAs HBTs,” Electron. Lett., vol. 27, no. 22, pp. 2048-2050, Oct. 1991.
[19] V. Fournier, J. Dangla and C. Dubon-Chevallier, “Investigation of emitter current crowding effect in heterojunction bipolar transistors ,” Electron. Lett., vol. 29, no. 20, pp. 1799-1800, Sept. 1993.
[20] L. Escotte, J.-P. Roux, R. Plana, J. Graffeuil and A. Gruhle, “Noise modeling of microwave heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, no. 5, pp. 883-889, May 1995.
[21] J.R. Hauser, “The effects of distributed base potential on emitter-current injection density and effective base resistance for stripe transistor geometries,” IEEE Trans. Electron Devices, Vol. 11, no. 5, pp. 238-242, May 1964.
[22] P.M. Asbeck, M.-C.F. Chang, J.A. Higgins, N.H. Sheng, G.J. Sullivan, and K.-C. Wang, “GaAlAs/GaAs Heterojunction Bipolar Transistors : Issues and Prospects for Application,” IEEE Trans. Electron Devices, Vol. 36, no. 10, pp. 2032-2042, May 1989.
Chapter 3
[1] E. C. Neilsen, “Behavior of noise figure in junction transistors,” in Proc. IRE, vol. 45, pp. 957–963, July 1957.
[2] A. V. D. Ziel, “Noise in junction transistors,” in Proc. IRE, vol. 46, pp. 1019–1038, June 1958.
[3] H. Fukui, “The noise performance of microwave transistors,” IEEE Trans. Electron Devices, vol. ED-13, pp. 329–341, Mar. 1966.
[4] R. J. Hawkins, “Limitations of Nielsen’s and related noise equations applied to microwave bipolar transistors, and a new expression for the frequency and current dependent noise figure,” Solid State Electron., vol. 20, pp. 191–196, 1977.
[5] R. A. Pucel and U. L. Rohde, “An exact expression for the noise resistance Rn for the Hawkins bipolar noise model,” IEEE Microwave Guided Wave Lett., vol. 3, pp. 35–37, Feb. 1993.
[6] L. Escotte et al., “Noise modeling of microwave heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 45, pp. 883–889, May 1995.
[7] S. P. Voinigescu et al., “A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design,” IEEE. J. Solid-State Circuits, vol. 32, pp. 1430–1439, Sept. 1997.
[8] P. Rouquette, D. Gasquet, T. Holden, and J. Moult, “HBT’s RF noise parameter determination by means of an efficient method based on noise analysis of linear amplifier networks,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 690–694, May 1997.
[9] M. Rudolph, R. Doerner, L. Klapproth, and P. Heymann, “An HBT noise model valid up to transit frequency,” IEEE Electron Device Lett., vol. 20, pp. 24–26, Jan. 1999.
[10] G. Niu, J. D. Cressler, S. Zhang, W. E. Ansley, C. S. Webster, and D. L. Harame, “A unified approach to RF and microwave noise parameter modeling in bipolar transistors,” IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2568–2574, Nov. 2001.
[11] U. Basaran, N.Wieser, G. Feiler, and M. Berroth, “Small-signal and high-frequency noise modeling of SiGe HBTs,” IEEE Trans. Microwave Theory Tech., Vol. 53, pp. 919-928, Mar. 2005.
[12] J. Gao, X. Li, H. Wang, and G. Boeck, “Microwave noise modeling for InP/InGaAs HBT’s,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1264–1272, Apr. 2004.
[13] G. Blasquez, J. Caminade, and K. M. van Vliet, “An accurate analysis of noise in rectangular bipolar transistors including current crowding,” Solid-State Electron., vol. 23, no. 5, pp. 423-431, May 1980.
[14] J.C.J. Paasschens, “Compact modeling of the noise of a bipolar transistor under DC and AC current crowding conditions,” IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1483–1495, Sept. 2004.
[15] W.-K. Lee, T.Y. Man, P.K.T. Mok, P.K. Ko, and M. Chan, “The impact of the AC current crowding effect on BJT RF noise modeling,” in Conf. IEEE Electron Devices and Solid-State Circuits, 2003, pp. 327-330.
[16] B.S. Wu, and F.A. Lindholm, “Non-quasi-static models including all injection levels and DC, AC, and transient emitter crowding in bipolar transistors,” IEEE Trans. Electron Devices, vol. 38, no. 1, pp. 167–177, Jan. 1991.
[17] H.-S. Rhee, S. Lee and B.-R. Kim, “D.c. and a.c. current crowding effects model analysis in bipolar junction transistors using a new extraction method,” Solid-State Electron., vol. 38, no. 1, pp. 31-35, Jan. 1995.
[18] W.B. Tang, C.M. Wang and Y.M. Hsin, “A complete small-signal equivalent circuit model of InGaP/GaAs HBT including base contact impedance and ac current crowding effect,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 10, pp. 3641-3647, Oct. 2006.
[19] H. H. Berger, “Models for contacts to planar devices,” Solid State Electron., vol. 15, pp. 145–147, Jun. 1972.
[20] D. Costa, W. Liu, and J. S. Harris, Jr., “Direct extraction of the Al-GaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit,” IEEE Trans. Electron Devices, vol. 38, no. 9, pp. 2018–2024, Sep. 1991.
[21] W. Liu, Handbook of III–V Heterojunction Bipolar Transistors. New York: Wiley, 1998.
[22] M. Ida, K. Kurishima, and N.Watanabe, “Over 300 GHz fT and fmax InP/InGaAs double heterojunction bipolar transistors with a thin pseudomorphic base,” IEEE Trans. Electron Devices, vol. 23, no. 12, pp. 694–696, Dec. 2002.
[23] K.Washio, E. Ohue, R. Hayami, A.Kodama, H. Shimamoto, M. Miura, K. Oda, I. Suzumura, T. Tominari, and T. Hashimoto, “High-speed scaled-down self-aligned SEG SiGe HBTs,” IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2417–2424, Dec. 2003.
[24] H. Hillbrand and P. H. Russer, “An efficient method for computer aided noise analysis of linear amplifier networks,” IEEE Trans. Circuits Syst., vol. CAS-23, pp. 235–238, Apr. 1976.