| 研究生: |
謝汶真 Wen-Zhen Hsieh |
|---|---|
| 論文名稱: |
部分及完全潤濕液體混合物之非典型潤濕行為 : 具有限前驅膜之奈米液滴及洩漏現象 Atypical wetting behavior of a mixture of partial and total wetting liquids: nanodroplet with finite precursor film and leak-out phenomenon |
| 指導教授: |
曹恆光
Heng-Kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 奈米液滴 、雙成分混合物 、接觸角 、前驅膜 、洩漏現象 |
| 外文關鍵詞: | nanodroplet, binary mixture, contact angle, precursor film, leak-out phenomenon |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用多體耗散粒子動力學法模擬雙成分互溶的奈米液滴在平滑表面上的濕潤行為,此奈米液滴是由部分潤濕液及完全潤濕液所組成。隨著改變不同的混合物組成,可以確定奈米液滴的三種潤濕狀態:(I)完全潤濕,(II)部分潤濕伴隨有限前驅膜,以及(III)部分潤濕。雙成分液滴在狀態(I)中總是自發性擴散,而在狀態(III)中其接觸角隨著組成單調變化。然而,在狀態(II)中,無論組成如何改變,接觸角皆保持不變。此時的液滴形態呈現荷包蛋狀(球帽外環繞有限前驅膜),透過組成分析發現在蛋白及蛋黃區內皆維持特定組成。儘管兩種液體之間的親和力很強,但在狀態(II)中,總有一些完全潤濕液會從球帽中逸出至前驅膜,即所謂的滲漏現象。此外這種非典型現象伴隨著球帽和前驅膜之間的化學勢平衡。與滲透平衡類似,凡得瓦分離壓力在前驅膜中提供了額外的貢獻。最後,探討了部分潤濕液的分子大小和兩種液體之間的親和力對洩漏現象的影響。
The wetting behavior of a nanodroplet which is a binary homogeneous mixture of partial and total wetting liquids on a smooth substrate is investigated by many-body dissipative particle dynamics. Dependent on the mixture composition, three wetting states of the nanodroplet can be identified: (I) total wetting, (II) partial wetting with precursor film, and (III) partial wetting. The binary droplet always spreads spontaneously in regime (I), while its contact angle (CA) changes with the composition monotonously in regime (III). However, in regime (II), the CA remains a constant regardless of the composition. The droplet morphology exhibits the fried-egg shape, a spherical cap surrounded by a precursor film. The compositions in both regions are unaltered in plateau regime. Although the affinity between the two liquids is strong, some of the total wetting liquid always escape from spherical cap to precursor film in regime (II), so-called leak-out phenomenon. Moreover, this atypical phenomenon accompanied by an equilibrium of chemical potential between the spherical cap and the precursor film. Similar to the osmotic equilibrium, the van der Waals disjoining pressure provides an extra contribution in the thin precursor film. Finally, the influences of the molecular size of the partial wetting liquid and the affinity between the two liquids on the leak-out phenomenon are examined.
[1] M.C. Costa, G.G. Parra, D.R. Larrude, G.J. Fechine, Screening effect of CVD graphene on the surface free energy of substrates, Physical Chemistry Chemical Physics 22(29) (2020) 16672-16680.
[2] J. Feng, Z. Guo, Wettability of graphene: from influencing factors and reversible conversions to potential applications, Nanoscale Horizons 4(2) (2019) 339-364.
[3] M.R. Fries, D. Stopper, M.W. Skoda, M. Blum, C. Kertzscher, A. Hinderhofer, F. Zhang, R.M. Jacobs, R. Roth, F. Schreiber, Enhanced protein adsorption upon bulk phase separation, Scientific reports 10(1) (2020) 1-9.
[4] J. Ghitman, E.I. Biru, E. Cojocaru, G.G. Pircalabioru, E. Vasile, H. Iovu, Design of new bioinspired GO-COOH decorated alginate/gelatin hybrid scaffolds with nanofibrous architecture: Structural, mechanical and biological investigations, RSC Advances 11(22) (2021) 13653-13665.
[5] A. Khan, M.R. Habib, R.R. Kumar, S.M. Islam, V. Arivazhagan, M. Salman, D. Yang, X. Yu, Wetting behaviors and applications of metal-catalyzed CVD grown graphene, Journal of Materials Chemistry A 6(45) (2018) 22437-22464.
[6] A. Pietrikova, P. Lukacs, D. Jakubeczyova, B. Ballokova, J. Potencki, G. Tomaszewski, J. Pekarek, K. Prikrylova, M. Fides, Surface analysis of polymeric substrates used for inkjet printing technology, Circuit World (2016).
[7] P.-G. De Gennes, Wetting: statics and dynamics, Reviews of modern physics 57(3) (1985) 827.
[8] M.N. Popescu, G. Oshanin, S. Dietrich, A. Cazabat, Precursor films in wetting phenomena, Journal of Physics: Condensed Matter 24(24) (2012) 243102.
[9] Y.-H. Weng, C.-J. Wu, H.-K. Tsao, Y.-J. Sheng, Spreading dynamics of a precursor film of nanodrops on total wetting surfaces, Physical Chemistry Chemical Physics 19(40) (2017) 27786-27794.
[10] C.-J. Wu, C.-J. Huang, S. Jiang, Y.-J. Sheng, H.-K. Tsao, Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine, RSC advances 6(30) (2016) 24827-24834.
[11] G. He, N. Hadjiconstantinou, A molecular view of Tanner's law: molecular dynamics simulations of droplet spreading, Journal of Fluid Mechanics 497 (2003) 123-132.
[12] M.D. Lelah, A. Marmur, Spreading kinetics of drops on glass, Journal of Colloid and Interface Science 82(2) (1981) 518-525.
[13] S. Rafaï, D. Bonn, A. Boudaoud, Spreading of non-Newtonian fluids on hydrophilic surfaces, Journal of Fluid Mechanics 513 (2004) 77-85.
[14] L. Tanner, The spreading of silicone oil drops on horizontal surfaces, Journal of Physics D: Applied Physics 12(9) (1979) 1473.
[15] Y. Yuan, T.R. Lee, Contact angle and wetting properties, Surface science techniques, Springer2013, pp. 3-34.
[16] Y.-T. Cheng, K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Size-dependent behavior and failure of young’s equation for wetting of two-component nanodroplets, Journal of Colloid and Interface Science 578 (2020) 69-76.
[17] F. Brochard-Wyart, R. Fondecave, M. Boudoussier, Wetting of antagonist mixtures: theleak out'transition, International Journal of Engineering Science 38(9-10) (2000) 1033-1047.
[18] R. Fondecave, F. Brochard-Wyart, Application of statistical mechanics to the wetting of complex liquids, Physica A: Statistical Mechanics and its Applications 274(1-2) (1999) 19-29.
[19] R. Fondecave, F.B. Wyart, Wetting laws for polymer solutions, EPL (Europhysics Letters) 37(2) (1997) 115.
[20] M. Boudoussier, Dry spreading of polymer solutions, Journal de Physique 48(3) (1987) 445-455.
[21] P. Espanol, P. Warren, Statistical mechanics of dissipative particle dynamics, EPL (Europhysics Letters) 30(4) (1995) 191.
[22] R.D. Groot, P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, The Journal of chemical physics 107(11) (1997) 4423-4435.
[23] P. Hoogerbrugge, J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, EPL (Europhysics Letters) 19(3) (1992) 155.
[24] H.-C. Tsai, Y.-L. Yang, Y.-J. Sheng, H.-K. Tsao, Formation of asymmetric and symmetric hybrid membranes of lipids and triblock copolymers, Polymers 12(3) (2020) 639.
[25] Y.-L. Yang, M.-Y. Chen, H.-K. Tsao, Y.-J. Sheng, Dynamics of bridge–loop transformation in a membrane with mixed monolayer/bilayer structures, Physical Chemistry Chemical Physics 20(9) (2018) 6582-6590.
[26] Y.-L. Yang, Y.-J. Sheng, H.-K. Tsao, Hybridization of lipids to monolayer and bilayer membranes of triblock copolymers, Journal of colloid and interface science 544 (2019) 53-60.
[27] Y.-L. Yang, H.-K. Tsao, Y.-J. Sheng, Morphology and Wetting Stability of Nanofilms of ABC Miktoarm Star Terpolymers, Macromolecules 53(2) (2020) 594-601.
[28] P. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Physical Review E 68(6) (2003) 066702.
[29] M. Arienti, W. Pan, X. Li, G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, The Journal of chemical physics 134(20) (2011) 204114.
[30] A. Ghoufi, J. Emile, P. Malfreyt, Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces, The European Physical Journal E 36(1) (2013) 1-12.
[31] K.-C. Chu, S.-W. Hu, H.-K. Tsao, Y.-J. Sheng, Strong competition between adsorption and aggregation of surfactant in nanoscale systems, Journal of colloid and interface science 553 (2019) 674-681.
[32] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci, Journal of colloid and interface science 538 (2019) 340-348.
[33] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Pressure-gated capillary nanovalves based on liquid nanofilms, Journal of colloid and interface science 560 (2020) 485-491.
[34] C. Chen, C. Gao, L. Zhuang, X. Li, P. Wu, J. Dong, J. Lu, A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage, Langmuir 26(12) (2010) 9533-9538.
[35] C. Chen, L. Zhuang, X. Li, J. Dong, J. Lu, A many-body dissipative particle dynamics study of forced water–oil displacement in capillary, Langmuir 28(2) (2012) 1330-1336.
[36] P.B. Warren, No-go theorem in many-body dissipative particle dynamics, Physical Review E 87(4) (2013) 045303.
[37] P.J. Flory, Principles of polymer chemistry, Cornell university press1953.
[38] S. Jamali, A. Boromand, S. Khani, J. Wagner, M. Yamanoi, J. Maia, Generalized mapping of multi-body dissipative particle dynamics onto fluid compressibility and the Flory-Huggins theory, The Journal of chemical physics 142(16) (2015) 164902.
[39] R.W. Zwanzig, High‐temperature equation of state by a perturbation method. I. Nonpolar gases, The Journal of Chemical Physics 22(8) (1954) 1420-1426.
[40] K. Bansal, U.S. Baghel, S. Thakral, Construction and validation of binary phase diagram for amorphous solid dispersion using Flory–Huggins theory, AAPS PharmSciTech 17(2) (2016) 318-327.
[41] D. Ausserré, A. Picard, L. Léger, Existence and role of the precursor film in the spreading of polymer liquids, Physical review letters 57(21) (1986) 2671.
[42] L. Leger, M. Erman, A. Guinet-Picard, D. Ausserre, C. Strazielle, Precursor film profiles of spreading liquid drops, Physical review letters 60(23) (1988) 2390.
[43] K. Hirose, T. Konisho, I. Ueno, Existing length of precursor film on inclined solid substrate, Microgravity Science and Technology 19(3) (2007) 81-83.
[44] W.-J. Liao, K.-C. Chu, Y.-H. Tsao, H.-K. Tsao, Y.-J. Sheng, Size-dependence and interfacial segregation in nanofilms and nanodroplets of homologous polymer blends, Physical Chemistry Chemical Physics 22(38) (2020) 21801-21808.