跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何冠廷
Kuan-Ting Ho
論文名稱: 使用Wilkinson功率合成器之3.5-GHz氮化鎵及Ka頻段砷化鎵功率放大器
3.5-GHz GaN and Ka-Band GaAs Power Amplifiers Using Wilkinson Power Combiner
指導教授: 傅家相
Jia-Shiang Fu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 76
中文關鍵詞: 功率放大器
外文關鍵詞: Power Amplifier
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們使用 WIN 0.25-µm GaN HEMT 製程設計應用於 3.5-GHz 之功率合成放大器,以及使用 WIN 0.15-µm GaAs pHEMT 製程來實現毫米波頻段之功率合成放大器。
    在第二章,我們設計一個應用於 3.5-GHz 的功率合成放大器,操作頻率範圍為 3.3 GHz 至 3.8 GHz 。本電路是由兩個單路功率放大器藉由具阻抗轉換功能之 Wilkinson 功率分配器及功率合成器組成。我們使用 RO4003C 高頻電路板實現此 Wilkinson 功率分配器及功率結合器,並藉由鎊線與功率放大器做連結。首先我們先量測單路的功率放大器,量測結果顯示其小訊號在 3.3-3.8 GHz 的操作頻率範圍內,增益皆超過 14 dB,輸入返回損耗則大於 9.7 dB。接著我們將單路功率放大器與 Wilkinson 功率分配器與功率合成器組裝為功率合成放大器,其小訊號增益及輸入返回損耗分別大於 13.5 dB 及 17.5 dB ,在 3.5 GHz 下的大訊號量測,OP1dB 及在 OP1dB 下的 PAE 分別為 37.3 dBm 及 40.9% 。
    在第三章,我們設計一個應用於毫米波頻段之功率合成放大器,操作頻率設計在 37 GHz 至 40 GHz,本電路亦使用具阻抗轉換功能之 Wilkinson 功率分配器及功率合成器,將兩個單路功率放大器進行功率的結合。由於本章節之操作頻率在毫米波頻段,因此我們以傳輸線的方式實現此電路。量測結果小訊號的響應往低頻偏移,在 26.8 GHz 的增益為 8.8 dB ,而輸入返回損耗及輸出返回損耗則是大於 7.2 dB 及 14.9 dB。我們選擇增益峰值高的頻率 26.8 GHz 量測大訊號,在 26.8 GHz 時, OP1dB 及在 OP1dB 下的 PAE 分別為 22.3 dBm 及 20%。


    In this paper, we use the WIN 0.25-µm GaN HEMT (high electron mobility transistor) process to design a power combine amplifiers for 3.5 GHz and use the WIN 0.15-µm GaAs pHEMT (pseudomorphic high electron mobility transistors) process to realize power combine amplifiers in the millimeter wave frequency bands. In the second chapter of this paper, we design a power combine amplifier for 3.5-GHz operation in the 3.3 GHz to 3.8 GHz frequency range. This circuit is composed of two single-way power amplifiers with Wilkinson power divider and power combiner. The Wilkinson power divider and power combiner with the impedance transforming structure are used for power combining. The
    Wilkinson power divider and power combiner are realized by using RO4003C high frequency two-layer board of off chip. It will finally connect with the power amplifier by way of pound wire. First we measure the single way power amplifier. The measurement results show that the small signal is within the operating frequency range of 3.3-3.8 GHz, the gain and input return loss are greater than 13.5 dB and 17.5 dB. Then we measure the power combine amplifier of this circuit. The measurement results show that the small signal is within the operating frequency range of 3.3-3.8 GHz, the gain and input return loss are greater than 13.5 dB and 17.5 dB, respectively, and the large signal is at 3.5 GHz, OP1dB and the following PAE are 37.3 dBm and 40.9%.
    In the third chapter of this paper, we also use the WIN 0.15-µm GaAs pHEMT process to design a power amplifier applied in the 5G millimeter wave frequency band with an operating frequency range of 37 GHz to 40 GHz. This circuit also uses a Wilkinson power divider and a power combiner with impedance transforming structure, combine the power from the two single-way power amplifiers. Since the operating frequency of this chapter is in the millimeter wave band, we implement this circuit in the form of a transmission line. The measurement results show that the gain at 26.8 GHz is 8.8 dB, while the input return loss
    and output return loss are greater than 7.2 dB and 14.9 dB. We choose the frequency with high gain peak at 26.8 GHz to measure large signals. At 26.8 GHz, the PAE of OP1dB and OP1dB are 20% and 22.3 dBm.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . II 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . V 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . VII 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . XI 第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . 1 1.2 論文架構 . . . . . . . . . . . . . . . . . . . . . 1 第二章 應用於 3.5-GHz 氮化鎵功率合成放大器 . . . . . . . 3 2.1 簡介 . . . . . . . . . . . . . . . . . . . . . . 3 2.2 氮化鎵介紹 . . . . . . . . . . . . . . . . . . . . 3 2.3 電路模擬與實測 . . . . . . . . . . . . . . . . . . 4 2.3.1 電路設計與模擬 . . . . . . . . . . . . . . . . . 4 2.3.2 量測結果 . . . . . . . . . . . . . . . . . . . . 16 2.3.3 電路偵錯與重新模擬 . . . . . . . . . . . . . . . . 22 2.4 結果與討論 . . . . . . . . . . . . . . . . . . . . 27 第三章 應用在毫米波頻段之功率合成放大器 . . . . . . . . . 29 3.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 電路模擬 . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 電路設計與模擬 . . . . . . . . . . . . . . . . . 29 3.2.2 量測結果 . . . . . . . . . . . . . . . . . . . . 40 3.2.3 電路偵錯與重新模擬 . . . . . . . . . . . . . . . . 44 3.3 結果與討論 . . . . . . . . . . . . . . . . . . . . 47 第四章 結論 . . . . . . . . . . . . . . . . . . . . . . 49 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . 51

    [1] F. Raab, P. Asbeck, S. Cripps, P. Kenington, Z. Popovic, N. Pothecary, J. Sevic, and N. Sokal, “Power amplifiers and transmitters for RF and microwave,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 814-826, 2002.
    [2] T. Qi and S. He, “Power up potential power amplifier technologies for 5G applications,” IEEE Microwave Magazine, vol. 20, no. 6, pp.89-101, 2019.
    [3] X. Jiang, S. Ortiz, and A. Mortazawi, “A Ka-band power amplifier based on the traveling-wave power-dividing/combining slotted-waveguide
    circuit,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 2, pp. 633-639, 2004.
    [4] V. Camarchia, R. Quaglia, A. Piacibello, D. P. Nguyen, H. Wang, and A.-V. Pham, “A review of technologies and design techniques of
    millimeter-wave power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 2957-2983, 2020.
    [5] L.-Y. Chen, “Design of 3.5-GHz GaN power amplifiers and a millimeter-wave GaAs power amplifier,” 2021.
    [6] E. M. Suijker, M. Sudow, M. Fagerlind, N. Rorsman, A. P. de Hek, and F. E. van Vliet, “GaN MMIC power amplifiers for S-band and X-band,” in 2008 38th European Microwave Conference, 2008, pp.297-300.
    [7] K. Joshin, T. Kikkawa, S. Masuda, and K. Watanabe, “Outlook for GaN HEMT technology,” Fujitsu Sci. Tech. J, vol. 50, no. 1, pp.138-143, 2014.
    [8] D. M. Pozar, “Microwave engineering,” 2011.
    [9] M. A. Gonzalez-Garrido, J. Grajal, P. Cubilla, A. Cetronio, C. Lanzieri, and M. Uren, “2-6 GHz GaN MMIC power amplifiers for electronic warfare applications,” in 2008 European Microwave Integrated Circuit Conference, 2008, pp. 83-86.
    [10] A. Alizadeh, M. Yaghoobi, M. Meghdadi, A. Medi, and S. Kiaei, “A 10-W X-band class-F high-power amplifier in a 0.25-µm GaAs pHEMT technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 157-169, 2021.
    [11] D.-W. Kim, “An output matching technique for a GaN distributed power amplifier MMIC using tapered drain shunt capacitors,” IEEE
    Microwave and Wireless Components Letters, vol. 25, no. 9, pp.603-605, 2015.
    [12] S.-H. Li, S. S. H. Hsu, J. Zhang, and K.-C. Huang, “Design of a compact GaN MMIC Doherty power amplifier and system level analysis
    with X-parameters for 5G communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5676-5684, 2018.
    [13] K. Bansal, S. Chander, S. Gupta, and A. Basu, “Design and development of X-band GaN HEMT power amplifier,” in 2022 6th International Conference on Devices, Circuits and Systems (ICDCS), 2022, pp. 166-168.
    [14] H.-Y. Huang, J.-J. Huang, J.-B. Cai, and H.-Y. Chang, “A 12-to-17 GHz power amplifier using T-model matching network in 0.25-µm GaN pHEMT technology,” pp. 980-982, 2019.
    [15] A. Bessemoulin, P. Evans, and T. Fattorini, “38 GHz driver and power amplifier MMICs in surface mount packages,” in 2012 7th European Microwave Integrated Circuit Conference, 2012, pp. 457-460.
    [16] M. Aust, A. Sharma, O. Fordham, R. Grundbacher, R. To, R. Tsai, and R. Lai, “A highly efficient Q-band MMIC 2.8 Watt output power amplifier based on 0.15/spl mu/m InGaAs/GaAs pHEMT process technology,” pp. 4 pp.-, 2005.
    [17] K. T. Trinh, C.-H. Lin, H.-L. Kao, H.-C. Chiu, and N. C. Karmakar, “Design of two-gain-level amplifier for Ka-band phase shifters using 0.15-µm GaAs pHEMT Process,” in 2020 4th Australian Microwave Symposium (AMS), 2020, pp. 1-2.
    [18] Q. Wang, M. Kao, S. Nayak, K. Kong, and C. Campbell, “A high power Q-band MMIC power amplifier based on dual-recess 0.15 /spl mu/m pHEMT,” pp. 133-136, 2004.
    [19] H. Li, X. Liang, and K. Wang, “A Ka-band 1.5W 27.5% PAE MMIC power amplifier in 0.15µm E-mode GaAs pHEMT process co-analysis with thermal characteristic,” in 2019 IEEE 3rd International Conference on Circuits, Systems and Devices (ICCSD), 2019, pp. 69-73.
    [20] L. Peng, J. Li, G. Zhang, S. Lin, and J. Chen, “Ka-band GaAs MMIC driver amplifier design,” in 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), 2020, pp. 287-290.

    QR CODE
    :::