跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳國勇
Tran Quoc Dung
論文名稱: 基於整合地表地下水模式之伏流水通量評估 – 以台灣屏東平原地下水集水區為例
ASSESSMENT OF FLUXES EVOLUTION BASED ON THE COUPLED SURFACE WATER AND GROUNDWATER FLOW MODEL IN A CASE STUDY OF PINGTUNG PLAIN GROUNDWATER BASIN, TAIWAN
指導教授: 倪春發
Chuen-Fa Ni
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 132
中文關鍵詞: GSFLOW地表地下水交互作用數值模式人工湖水收支伏流水潛勢AHP蒙地卡羅模擬不確定性分析
外文關鍵詞: surface water and groundwater interaction, artificial lake, water budgets, interflow potential
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於水資源管理評估中,土地利用型態及人為活動為量化地表地下水交互作用(SGIs)之關鍵。本研究利用地表地下水流模式(the groundwater and surface water flow :GSFLOW) 量化屏東平原地下水區(PPGB)之SGIs動態,其中特別針對伏流水進行評估,其在河川基流量構成中扮演關鍵之角色,並對於近地表水循環有極大影響。本研究工作著重評估高屏溪下游伏流水潛勢並嘗試量化其量體。本研究亦使用基於物理模型的數值模式量化水循環在空間及季節變化,其受到複雜的河貌型態及人為活動所影響。此外,伏流水潛勢係透過修正之指數疊加模型分析,其計算層次分析法 (AHP) 所採用因子的評分和權重進行分析。藉由GSFLOW模式進行量化伏流水潛勢,透過蒙地卡羅模擬評估降雨導致之伏流水潛勢不確定性。校正模型與地下水監測網以及河川水位觀測站之資料有良好的一致性。流域尺度之水收支顯示高度不均勻之降雨行為,屏東平原80%降雨來自濕季。因高滲透率之地表沈積物,年平均地表逕流及入滲分別為總降雨量之57% 以及40%,因地表坡度較高導致70%地表逕流轉為河川流量,而伏流水主導近河床之水流交互作用。乾濕季節之伏流水差異可達200%,地下水補注相較於伏流水補注幾乎微不足道,地刷水補注河川流量約10%。屏東平原人為抽水行為對於地下水位變動相較於土地利用型態有顯著之影響。於模型中,預計興建之人工湖因面積小,對於當地之水收支影響較小,顯示人工補注湖對於地表水循環影響不顯著。在伏流水潛勢評估中,高潛勢地區分布在高屏溪中高海拔地帶,GSFLOW模式模擬結果與修正之指數疊加模型分析有一致之結果,平均伏流水率在高海拔區域為3.5 x 104 m3/d,在沿海區域為2.0 x 104 m3/d。地下水超抽行為對於評估高屏溪地表地下水交互作用有顯著之影響,降雨不確定性高度影響濕季之伏流水潛勢,而在乾季,伏流水潛勢則非常穩定,顯示研究區域之伏流水為可靠之水源來源。


    The landforms and human activities are essential in quantifying surface water and groundwater interactions (SGIs) for water resources management. The study uses the groundwater and surface water flow (GSFLOW) model to quantify SGIs of Pingtung Plain groundwater basin (PPGB) dynamics in southern Taiwan. One of the particular estimation fluxes of SGIs is interflow, a vital flow contributing to the river. It directly affects the near-surface water cycles for water resource management. Focused on assessing the interflow potential and quantifying it in southern Taiwan downstream along the Kaoping River is also considered. Specifically, a physical-based numerical model to quantify the spatial and seasonal variations of water cycles influenced by complex fluvial landform conditions and human activities is used for the study issues. Additionally, the potential interflow is first based on the modified index-overlay model, which calculates the ratings and weightings of the selected factors employed by the analytical hierarchy process (AHP). The groundwater and surface water flow (GSFLOW) numerical model is then used to connect the index-overlay model for quantifying the interflow potential for practical applications. The study uses Monte Carlo simulations to assess the influence of rainfall-induced variations on the interflow uncertainty in the study area. The results of model calibrations agree with the data obtained from the available groundwater monitoring network and the observed stream stations. The basin-scale water budgets show highly nonuniform precipitation, and over 80% of annual rainfall is from wet seasons in the PPGB. With high permeable surficial deposits, the year-averaged surface runoff and infiltration are approximately 57% and 40% of total precipitations. The high slope fluvial landforms lead to 70% of annual surface runoff that can become streamflow, and an interflow dominates water interactions near streambeds. More than 200% of the interflow rate compares wet and dry seasons. The net groundwater discharge is relatively tiny compared to interflows. About 10% of the net groundwater discharge flows to rivers. In the PPGB, the pumping variations induced on groundwater levels are insignificant compared to natural landform factors. The relatively small area of the proposed artificial lake on the model makes its contribution to the local water budgets insignificant, indicating the low impacts of the artificial recharge lake on the surface water environment. In the interflow potentiality estimations, the high potential zones distribute in the high to middle altitude areas along the Kaoping River. The GSFLOW numerical simulations show the interflow variation patterns similar to potential interflow results obtained from the index-overlay model. The average interflow rates are approximately 3.5 x 104 (m3/d) in high altitude zones and 2.0 x 104 (m3/d) near the coastal zones. Issues of extra-pumping are significant for the assessment of surface water and groundwater interactions in Kaoping River. The rainfall uncertainty strongly influences interflow rates in wet seasons, especially during storm peaks or heavy rainfall events. Interflow rates are relatively stable in dry seasons, indicating that interflow is a reliable flow in the study area.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS v LIST OF FIGURES viii LIST OF TABLES x EXPLANATION OF SYMBOLS xii LIST OF ABBREVIATIONS xiii CHAPTER 1. INTRODUCTION 1 1.1. Literature Review 1 1.2. Methodology 2 1.3. Motivations and Objectives 4 1.4. Thesis Structure 5 CHAPTER 2. MATERIALS AND METHODS 7 2.1. PRMS Model 7 2.2 MODFLOW-2005 Model 8 2.2.1. MODFLOW-2005 Input Files 9 2.2.2. MODFLOW-2005 Output Files 9 2.3. GSFLOW Model 10 2.3.1. Modular Modeling System Files 11 2.3.1.1. GSFLOW Control File 11 2.3.1.2. PRMS Data File 11 2.3.1.3. PRMS Parameter File 12 2.3.2. GSFLOW Output Files 15 2.4. Analytical Hierarchical Process Technique 18 2.5. Monte Carlo Simulation Model 18 2.6. Governing Equation 19 CHAPTER 3. NUMERICAL MODELING OF SURFACE WATER AND GROUNDWATER INTERACTIONS INDUCED BY COMPLEX FLUVIAL LANDFORMS AND HUMAN ACTIVITIES IN THE PINGTUNG PLAIN GROUNDWATER BASIN, TAIWAN 21 3.1. Pingtung Plain Groundwater Basin (PPGB) 21 3.2. Conceptual Models and Numerical Considerations 24 3.2.1. Conceptual Model and Parameters for Groundwater Flow 26 3.2.2. Conceptual Model and Parameters for Surface Water Flow 29 3.3. Results and Discussions of SGIs Model in PPGB 31 3.3.1. Model Calibration and Validation 31 3.3.2. Surface Water and Groundwater Interactions 38 3.3.2.1. Water Cycle for The Entire PPGB 38 3.3.2.2. Seasonal Variations of the SGIs and Interactions Near the Soil Zones 42 3.3.2.3. Interactions Behavior in Upstream and Downstream Fans 44 3.3.2.4. Effects of the Artificial Recharge on the Local Water Cycle 45 CHAPTER 4. MAPPING INTERFLOW POTENTIAL AND THE VALIDATION OF INDEX-OVERLAY WEIGHTINGS BY USING COUPLED SURFACE WATER AND GROUNDWATER FLOW MODEL 48 4.1. Materials 48 4.1.1. Sub-basin Model of Kaoping River 48 4.1.2. Data Sources and Assumptions 49 4.2. Index-Overlay and Numerical Models 51 4.2.1. Index-Overlay Model 51 4.2.2. GSFLOW Numerical Model in Kaoping River 56 4.3. Results and Discussions 58 4.3.1. Interflow Potential Based on the Index-Overlay Model 58 4.3.2. Quantification of Interflow Potential Based on the GSFLOW Model 60 4.3.2.1. Model Calibration and Validation 60 4.3.2.2. Interflow Dynamics in the Sub-model 62 4.3.2.3. Effect of Extra-pumping on the Local Water Cycle in Kaoping River 66 4.3.2.4. Interflow Uncertainty by Precipitation Evaluation 69 CHAPTER 5. CONCLUSION 71 BIBLIOGRAPHY 74 APPENDICES 81

    1. Yang, Z.; Zhou, Y.; Wenninger, J.; Uhlenbrook, S.; Wang, X.; Wan, L. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China. Hydrogeology 2017, 25, 1341–1355.
    2. An, H.; Yu, S. Finite volume integrated surface-subsurface flow modeling on non-orthogonal grids. Water Resour. Res. 2014, 50, 2312–2328
    3. Alley, W. M.; Healy, R. W.; LaBaugh, J. W.; Reilly, T. E. Flow and storage in groundwater systems. Science 2002, 296, 1985–1990.
    4. Dragon, K.; Marciniak, M. Chemical composition of groundwater and surface water in the Arctic environment (Petuniabukta region, central Spitsbergen). J. Hydrol. 2010, 386, 160–172.
    5. Barthel, R.; Banzhaf, S. Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models. Water Resour. Manag. 2016, 30, 1–32.
    6. Vasconcelos, V. V. What maintains the waters flowing in our rivers? Appl. Water Sci. 2017, 7, 1579–1593.
    7. Huntington, J. L.; Niswonger, R. G. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach. Water Resour. Res. 2012, 48, 1–20.
    8. Zhang, Z.; Chen, X.; Xu, C. Y.; Hong, Y.; Hardy, J.; Sun, Z. Examining the influence of river-lake interaction on the drought and water resources in the Poyang Lake basin. J. Hydrol. 2015, 522, 510–521.
    9. Carroll, R. W. H.; Deems, J. S.; Niswonger, R.; Schumer, R.; Williams, K. H. The Importance of Interflow to Groundwater Recharge in a Snowmelt-Dominated Headwater Basin. Geophys. Res. Lett. 2019, 46, 5899–5908.
    10. Wei, X.; Bailey, R.T. Assessment of system responses in intensively irrigated stream-aquifer systems using SWAT-MODFLOW. Water 2019, 11, 1576.
    11. Kuffour, B.N.; Engdahl, N.; Woodward, C.; Condon, L.; Kollet, S.; Maxwell, R. Simulating coupled surface-subsurface flows with ParFlow v3.5.0: Capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model. Geosci. Model Dev. 2020, 13, 1373–1397.
    12. Panday, S.; Huyakorn, P.S. A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv. Water Resour. 2004, 27, 361–382.
    13. Muma, M.; Rousseau, A.N.; Gumiere, S.J. Assessment of the impact of subsurface agricultural drainage on soil water storage and flows of a small watershed. Water 2016, 8, 326.
    14. Brunner, P.; Simmons, C.T. HydroGeoSphere: A fully integrated, physically based hydrological model. Ground Water 2012, 50, 170–176.
    15. Salem, A.; Dezs˝o, J.; El-Rawy, M.; Lóczy, D. Hydrological modeling to assess the efficiency of groundwater replenishment through natural reservoirs in the Hungarian Drava River floodplain. Water 2020, 12, 250.
    16. El-Rawy, M.; Zlotnik, V.A.; Al-Raggad, M.; Al-Maktoumi, A.; Kacimov, A.; Abdalla, O. Conjunctive use of groundwater and surface water resources with aquifer recharge by treated wastewater: Evaluation of management scenarios in the Zarqa River Basin, Jordan. Environ. Earth Sci. 2016, 75, 1146.
    17. Markstrom, S.L.; Niswonger, R.G.; Regan, R.S.; Prudic, D.E.; Barlow, P.M. GSFLOW Coupled Groundwater and Surface-Water Flow Model Based on the Integration of the Precipitation Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-2005); U.S. Geological Survey Techniques and Methods 6-D1; U.S. Geological Survey: Reston, VA, USA, 2008; p. 240.
    18. Shu, Y.; Li, H.; Lei, Y. Modelling groundwater flow with MIKE SHE using conventional climate data and satellite data as model forcing in Haihe Plain, China. Water 2018, 10, 1295.
    19. Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input / Output File Documentation Version 2009; Texas Water Resources Institute Technical Report No. 365; Texas A&M University System: College Station, TX, USA, 2011.
    20. Harbaugh, A.W. MODFLOW-2005, The U.S. Geological Survey Modular Groundwater Model–The Groundwater Flow Process; USGS Techniques and Methods 6-A16; USGS: Reston, VA, USA, 2005.
    21. Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G. Precipitation Runoff Modeling System; User’s Manual; USGS Water Resources Investigations Report 83-4238; USGS: Denver, CO, USA, 1983.
    22. Demiroǧlu, M.; Dowd, J. The utility of vulnerability maps and GIS in groundwater management: A case study. Turkish J. Earth Sci. 2014, 23, 80–90.
    23. Jang, W. S.; Engel, B.; Harbor, J.; Theller, L. Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC. Water (Switzerland) 2017, 9, 792.
    24. Vu, T. D.; Ni, C. F.; Li, W. C.; Truong, M. H. Modified index-overlay method to assess spatial-temporal variations of groundwater vulnerability and groundwater contamination risk in areas with variable activities of agriculture developments. Water (Switzerland) 2019, 11, 2492.
    25. Vu, T. D.; Ni, C. F.; Li, W. C.; Truong, M. H.; Hsu, S. M. Predictions of groundwater vulnerability and sustainability by an integrated index-overlay method and physical-based numerical model. J. Hydrol. 2021, 596, 126082.
    26. Díaz-Alcaide, S.; Martínez-Santos, P. Review: Advances in groundwater potential mapping. Hydrogeol. J. 2019, 27, 2307–2324.
    27. Benjmel, K.; Amraoui, F.; Boutaleb, S.; Ouchchen, M.; Tahiri, A.; Touab, A. Mapping of Groundwater Potential Zones in Techniques, and Multicriteria Data Analysis ( Case of the Ighrem Region, Western Anti-Atlas, Morocco). Water 2020, 12, 471.
    28. Tolche, A. D. Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geol. Ecol. Landscapes 2021, 5, 65–80.
    29. Kaliraj, S.; Chandrasekar, N.; Magesh, N. S. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab. J. Geosci. 2014, 7, 1385–1401.
    30. Çelik, R. Evaluation of groundwater potential by GIS-based multicriteria decision making as a spatial prediction tool: Case study in the Tigris River Batman-Hasankeyf Sub-Basin, Turkey. Water (Switzerland) 2019, 11, 2630.
    31. Allafta, H.; Opp, C.; Patra, S. Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the shatt Al-Arab Basin. Remote Sens. 2021, 13, 1–28.
    32. Ha, K.; Koh, D. C.; Yum, B. W.; Lee, K. K. Estimation of river stage effect on groundwater level, discharge, and bank storage and its field application. Geosci. J. 2008, 12, 191–204.
    33. Saleh, F.; Ducharne, A.; Flipo, N.; Oudin, L.; Ledoux, E. Impact of river bed morphology on discharge and water levels simulated by a 1D Saint-Venant hydraulic model at regional scale. J. Hydrol. 2013, 476, 169–177.
    34. Shaban, A.; Khawlie, M.; Abdallah, C. Use of remote sensing and GIS to determine recharge potential zones: The case of Occidental Lebanon. Hydrogeol. J. 2006, 14, 433–443.
    35. Yeh, H. F.; Lee, C. H.; Hsu, K. C.; Chang, P. H. GIS for the assessment of the groundwater recharge potential zone. Environ. Geol. 2009, 58, 185–195.
    36. Huang, C. C.; Yeh, H. F.; Lin, H. I.; Lee, S. T.; Hsu, K. C.; Lee, C. H. Groundwater recharge and exploitative potential zone mapping using GIS and GOD techniques. Environ. Earth Sci. 2013, 68, 267–280.
    37. Bari, M. A.; Smettem, K. R. J. A conceptual model of daily water balance following partial clearing from forest to pasture. Hydrol. Earth Syst. Sci. 2006, 10, 321–337.
    38. Watson, A.; Miller, J.; Fink, M.; Kralisch, S.; Fleischer, M.; De Clercq, W. Distributive rainfall-runoff modelling to understand runoff-to-baseflow proportioning and its impact on the determination of reserve requirements of the Verlorenvlei estuarine lake, west coast, South Africa. Hydrol. Earth Syst. Sci. 2019, 23, 2679–2697.
    39. Meles Bitew, M.; Jackson, C. R.; Goodrich, D. C.; Younger, S. E.; Griffiths, N. A.; Vaché, K. B.; Rau, B. Dynamic domain kinematic modelling for predicting interflow over leaky impeding layers. Hydrol. Process. 2020, 34, 2895–2910.
    40. Taylor, A. R.; Lamontagne, S.; Crosbie, R. S. Measurements of riverbed hydraulic conductivity in a semiarid lowland river system (Murray-Darling Basin, Australia). Soil Res. 2013, 51, 363–371.
    41. Crosbie, R. S.; Taylor, A. R.; Davis, A. C.; Lamontagne, S.; Munday, T. Evaluation of infiltration from losing-disconnected rivers using a geophysical characterization of the riverbed and a simplified infiltration model. J. Hydrol. 2014, 508, 102–113.
    42. Harvey, J. W.; Gooseff, M. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resour. Res. 2015, 51, 6893–6922.
    43. Cui, G.; Su, X.; Liu, Y.; Zheng, S. Effect of riverbed sediment flushing and clogging on river-water infiltration rate: a case study in the Second Songhua River, Northeast China. Hydrogeol. J. 2021, 29, 551–565.
    44. Grodzka-Łukaszewska, M.; Nawalany, M.; Zijl, W. A Velocity-Oriented Approach for Modflow. Transp. Porous Media 2017, 119, 373–390.
    45. Diaz, M.; Sinicyn, G.; Grodzka-łukaszewska, M. Modelling of groundwater-surface water interaction applying the hyporheic flux model. Water (Switzerland) 2020, 12, 1–19.
    46. McCallum, A.M.; Andersen, M.S.; Giambastiani, B.M.S.; Kelly, B.F.J.; Ian Acworth, R. River aquifer interactions in a semi-arid environment stressed by groundwater abstraction. Hydrol. Process. 2013, 27, 1072–1085.
    47. Wu, B.; Zheng, Y.; Wu, X.; Tian, Y.; Han, F.; Liu, J.; Zheng, C. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach. Water Resour. Res. 2015, 51, 2153–2173.
    48. Joo, J.; Tian, Y.; Zheng, C.; Zheng, Y.; Sun, Z.; Zhang, A.; Chang, H. An integrated modeling approach to study the surface water-groundwater interactions and influence of temporal damping effects on the hydrological cycle in the Miho catchment in South Korea. Water 2018, 10, 1529.
    49. Moriasi, D. N.; Arnold, J. G.; Van Liew, M. W.; Bingner, R. L.; Harmel, R. D.; Veith, T. L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900.
    50. Moriasi, D. N.; Gitau, M. W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785.
    51. Golmohammadi, G.; Prasher, S.; Madani, A.; Rudra, R. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology 2014, 1, 20–39.
    52. Nasiri, S.; Ansari, H.; Ziaei, A. N. Simulation of water balance equation components using SWAT model in Samalqan Watershed (Iran). Arab. J. Geosci. 2020, 13, 421.
    53. Leavesley, G.H.; Restrepo, P.J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G. The Modular Modeling System (MMS): User’s Manual; U.S. Geological Survey Open-File Report 96-151; U.S. Geological Survey: Denver, CO, USA, 1996.
    54. Niswonger, R.G.; Prudic, D. E. Documentation of the Streamflow-Routing (SFR2) Package to include unsaturated flow beneath streams - A modification to SFR1; U.S. Geological Survey Techniques and Methods 6-A13, 2005; p. 62.
    55. Hill, M.C.; Banta, E.R.; Harbaugh, A. W. MODFLOW-2000, the U.S. Geological Survey Modular Groundwater Model - User Guide to the observations, sensitivity, and parameter-estimation processes and three post-processing programs; U.S. Geological Survey Open-File Report 00-184, 2000.
    56. Smith, R. E.; Hebbert, R. H. B. Mathematical simulation of interdependent surface and subsurface hydrologic processes. Water Resour. Res. 1983, 19, 987–1001.
    57. Brooks, R.H.; Corey, A.T. Properties of porous media affecting fluid flow. Irrig. Drain. Div. 1966, 92, 61–88.
    58. Hamon, W. R. Estimating Potential evapotranspiration: Proceedings of the American Society of Civil Engineers. J. Hydraul. Div. 1961, 87, 107–120.
    59. Jensen, M. E.; Rob, D. C. N.; Franzoy, C. E. Scheduling irrigations using climate-crop-soil data; National Conference on Water Resources Engineering of the American Society of Civil Engineers: New Orleans, 1969; p. 20.
    60. Saaty, T. L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1970, 48, 9–26.
    61. Niswonger, R.G.; Prudic, D.E.; Regan, R.S. Documentation of the Unsaturated-Zone Flow (UZF1) Package for Modeling Unsaturated Flow between the Land Surface and the Water Table with MODFLOW-2005; U.S. Geological Survey Techniques and Methods 6-A19; U.S. Geological Survey: Reston, VA, USA, 2006; p. 74.
    62. Suppe, J. Kinematics of arc-continental collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China 1984, 6, 21–33.
    63. Ting, C.S.; Zhou, Y.X.; De Vries, J.J.; Simmers, I. Development of a preliminary groundwater flow model for water resources management in the Pingtung Plain, Taiwan. Ground Water 1997, 36, 20–36.
    64. Taiwan, C.G.S. Hydrogeological Survey Report of Pingtung Plain, Taiwan; Central Geological Survey Ministry of Economic Affairs Executive Yuan: Taiwan, 2002; pp. 97–142.
    65. Liang, C.P.; Jang, C.S.; Liang, C.W.; Chen, J.S. Groundwater vulnerability assessment of the Pingtung plain in Southern Taiwan. Int. J. Environ. Res. Public Health 2016, 13, 1167.
    66. Taiwan Government Report. Review on the Regulation Planning of Kaoping River; Taiwan Water Resources Agency, 2008.
    67. Water Resources Agency. The preliminary investigation and tests of interflow resources and riverbank water intake works evaluation near the Kaoping river; Southern Region Water Resources Office: Kaosiung, Taiwan, 2012.
    68. Tran, Q. D.; Ni, C. F.; Lee, I. H.; Truong, M. H.; Liu, C. J. Numerical modeling of surface water and groundwater interactions induced by complex fluvial landforms and human activities in the Pingtung plain groundwater basin, Taiwan. Appl. Sci. 2020, 10, 1–25.
    69. Chen, C. H.; Wang, C. H.; Hsu, Y. J.; Yu, S. B.; Kuo, L. C. Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan. Eng. Geol. 2010, 115, 122–131.
    70. Chang, F. J.; Huang, C. W.; Cheng, S. T.; Chang, L. C. Conservation of groundwater from over-exploitation – Scientific analyses for groundwater resources management. Sci. Total Environ. 2017, 598, 828–838.
    71. Obi Reddy, G. P.; Maji, A. K.; Gajbhiye, K. S. Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India - A remote sensing and GIS approach. Int. J. Appl. Earth Obs. Geoinf. 2004, 6, 1–16.
    72. Siddayao, G. P.; Valdez, S. E.; Fernandez, P. L. Analytic Hierarchy Process (AHP) in Spatial Modeling for Floodplain Risk Assessment. Int. J. Mach. Learn. Comput. 2014, 4, 450–457.
    73. Nithya, C. N.; Srinivas, Y.; Magesh, N. S.; Kaliraj, S. Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sens. Appl. Soc. Environ. 2019, 15, 100248.
    74. Saaty, T. L. The Analytic Hierarchy Process. McGraw-Hill, New York, 1980.

    QR CODE
    :::