| 研究生: |
鄭宇庭 Yu-Ting Cheng |
|---|---|
| 論文名稱: |
雙成分奈米液滴的尺寸效應與失效楊式方程式 Size-dependent behavior and failure of Young's equation for wetting of two-component nanodroplets |
| 指導教授: |
曹恆光
Heng-Kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 尺寸效應 、楊式方程式 、接觸角 、雙成分奈米液滴 、表面張力 、表面組成 |
| 外文關鍵詞: | size-dependence, Young’s equation, contact angle, two-component nanodroplet, surface tension, surface composition |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用多體耗散粒子動力學法模擬雙成分互溶的奈米液滴在平滑表面上的濕潤行為。研究中發現楊式方程式僅可以使用於純物質的奈米液滴,而利用在雙成分液滴時,楊式方程式會失效。發現在雙成分系統下,實際測量奈米液滴的接觸角會大於利用楊式方程式所預測的楊式接觸角。隨著組成成分越接近純物質,其誤差值會逐漸下降。另外,若雙成分之間的互溶性增加,其誤差值也會隨之下降。失效的楊式方程式與奈米液滴及奈米薄膜的尺寸效應有關係,隨著奈米液滴的半徑增加,實際的接觸角則會下降並趨近於宏觀系統中的楊式接觸角。相同的,界面張力也會隨著奈米薄膜的厚度增加而下降,並趨近於宏觀系統的定值。在奈米系統下,尺寸效應所影響的界面組成造成的界面張力改變,是造成雙成分系統下,楊式方程式失效的原因。
The wetting behavior of a nanodroplet containing two miscible liquids on a smooth substrate is explored by many-body dissipative particle dynamics simulations. It is found that Young’s equation is valid for nanodroplets of pure fluids but fails for binary nanodroplets. The actual contact angle (CA) is always larger than the Young’s CA, and their difference is getting smaller as the composition approaches pure fluids or the compatibility of the mixture is increased. The failure of Young’s equation is closely associated with the size-dependent behavior in binary nanodroplets and nanofilms. As the nanodroplet size is increased, the actual CA is found to decline but approaches a constant expected in macroscopic systems. Similarly, as the nanofilm thickness is increased, surface tension decreases and reaches its macroscopic value. The change of surface tension is attributed to the size-dependent surface composition, which is responsible for the failure of Young’s equation.
Chapter 1
[1] X. Q. Meng, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, L. Dong, Z. Y. Xiao, Y. C. Liu, X. W. Fan, Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing, Chem. Phys. Lett. 413 (2005) 450-453.
[2] P. Rochowski, M. Grzegorczyk, S. Pogorzelski, A wettability-based approach for the monitoring of drug transport through biological membranes, J. Colloid Interface Sci. 555 (2019) 352-360.
[3] R. C. R. da Silva, R. S. Mohamed, A. C. Bannwart, Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow, J. Pet. Sci. Eng. 51 (2006) 17-25.
[4] T. Young, III. An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond. 95 (1805) 65-87.
[5] Y. Yuan, T. R. Lee, Contact angle and wetting properties, Surface science techniques (2013) 3-34. Springer, Berlin, Heidelberg.
[6] S. Ebnesajjad, Surface tension and its measurement, In Handbook of Adhesives and Surface Preparation, (2011) 21-30. William Andrew Publishing.
[7] F. M. Chang, S. J. Hong, Y. J. Sheng, H. K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects, Appl. Phys. Lett. 95 (2009) 064102.
[8] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng, H. K. Tsao, Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning. Langmuir 27 (2011) 6890-6896.
[9] Y. F. Li, Y. J. Sheng, H. K. Tsao, Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis, Langmuir 29 (2013) 7802-7811.
[10] S. K. Rhee, Wetting of ceramics by liquid metals, J. Am. Ceram. Soc. 54 (1971) 332-334.
[11] D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima, H. Fujimura, Molecular dynamics analysis on wetting and interfacial properties of water-alcohol mixture droplets on a solid surface, J. Chem. Phys. 140 (2014) 034505.
[12] H. Jiang, F. Müller-Plathe, A. Z. Panagiotopoulos, Contact angles from Young’s equation in molecular dynamics simulations, J. Chem. Phys. 147 (2017) 084708.
[13] S. K. Das, K. Binder, Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid. EPL 92 (2010) 26006.
[14] J. C. Fernandez-Toledano, T. D. Blake, J. De Coninck, Young’s equation for a two-liquid system on the nanometer scale, Langmuir 33 (2017) 2929-2938.
[15] N. Kumar, S. Kumbhat, Essentials in Nanoscience and Nanotechnology, John Wiley & Sons Inc. 2016.
[16] L. S. Sundar, M. H. Farooky, S. N. Sarada, M. K. Singh, Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids, Int. Commun. Heat Mass Transf. 41 (2013) 41-46.
[17] T. Pompe, S. Herminghaus, Three-phase contact line energetics from nanoscale liquid surface topographies, Phys. Rev. Lett. 85 (2000) 1930.
[18] A. Amirfazli, A. W. Neumann, Status of the three-phase line tension: a review, Adv. Colloid Interface Sci. 110 (2004) 121-141.
[19] M. Khalkhali, N. Kazemi, H. Zhang, Q. Liu, Wetting at the nanoscale: A molecular dynamics study, J. Chem. Phys. 146 (2017) 114704.
[20] T. Ingebrigtsen, S. Toxvaerd, Contact angles of Lennard-Jones liquids and droplets on planar surfaces, J. Phys. Chem. C 111 (2007) 8518-8523.
[21] S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, A. K. Soper, Molecular segregation observed in a concentrated alcohol–water solution, Nature 416 (2002) 829-832.
[22] P. J. Flory, Principles of polymer chemistry, Cornell University Press (1953).
[23] H.-O. Johansson, G. Karlström, F. Tjerneld, C. A. Haynes, Driving forces for phase separation and partitioning in aqueous two-phase systems, J. Chromatogr. B 711 (1998) 3–17.
[24] G. Vazquez, E. Alvarez, J. M. Navaza, Surface tension of alcohol water+water from 20 to 50. degree. C, J. Chem. Eng. Data 40 (1995) 611-614.
[25] P.B. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Phys, Rev. E 68 (2003). 066702.
[26] C. Chen, L. Zhuang, X. Li, J. Dong, J. Lu, A many-body dissipative particle dynamics study of forced water–oil displacement in capillary, Langmuir 28 (2011) 1330–1336.
[27] A. Ghoufi, J. Emile, P. Malfreyt, Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces, Eur. Phys. J. E-Soft Matter 36 (2013) 10.
[28] K.C. Chu, Y.J. Sheng, H.K. Tsao, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci, J. Colloid Interface Sci. 538 (2019) 340–348.
[29] A. F. Jakobsen, Constant-pressure and constant-surface tension simulations in dissipative particle dynamics, J. Chem. Phys. 122 (2005) 124901.
[30] M. Liu, P. Meakin, H. Huang, Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction, J. Comput. Phys. 222 (2007) 110–130.
[31] M. Arienti, W. Pan, X. Li, G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J. Chem. Phys. 134 (2011) 204114.
[32] A. Ghoufi, P. Malfreyt, Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods, Phys, Rev. E 82 (2010) 016706.
[33] K. C. Chu, H. K. Tsao, Y. J. Sheng, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci, J. Colloid Interface Sci. 538 (2019) 340-348.
[34] K. C. Chu, H. K. Tsao, Y. J. Sheng, Pressure-gated capillary nanovalves based on liquid nanofilms, J. Colloid Interface Sci. 560 (2020) 485-491.
[35] T. Bodnár, G. P. Galdi, Š. Nečasová, Particles in Flows (2017) Springer International Publishing.
[36] J.H. Irving, J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18 (1950) 817– 829.
[37] D. B. Macleod, On a relation between surface tension and density, J. Chem. Soc. Faraday Trans. 19 (1923) 38-41.
[38] D. Seveno, T. D. Blake, J. De Coninck, Young’s equation at the nanoscale, Phys. Rev. Lett. 111 (2013) 096101.
[39] J. C. Fernandez-Toledano, T. D. Blake, P. Lambert, J. De Coninck, On the cohesion of fluids and their adhesion to solids: Young's equation at the atomic scale, Adv. Colloid Interface Sci. 245 (2017) 102-107.
[40] Z. Zhang, W. Wang, A. N. Korpacz, C. R. Dufour, Z. J. Weiland, C. R. Lambert, M. T. Timko, Binary Liquid Mixture Contact-Angle Measurements for Precise Estimation of Surface Free Energy, Langmuir 35 (2019) 12317-12325.
[41] J. Sun, S. L. Simon, The melting behavior of aluminum nanoparticles, Thermochim Acta 463 (2007) 32-40.
[42] M. M. Elokr, R. Awad, A. A. El-Ghany, A. A. Shama, A. A. El-Wanis, Effect of nano-sized ZnO on the physical properties of (Cu0.5Tl0.25Pb0.25)Ba2Ca2Cu3O10−δ, J. Supercond. Nov. Magn. 24 (2011) 1345-1352.
[43] K. C. Chu, S. W. Hu, H. K. Tsao, Y. J. Sheng, Strong competition between adsorption and aggregation of surfactant in nanoscale systems, J. Colloid Interface Sci. 553 (2019) 674-681.
[44] L. G.MacDowell, J. Benet, N. A. Katcho, J. M. Palanco, Disjoining pressure and the film-height-dependent surface tension of thin liquid films: New insight from capillary wave fluctuations, Adv. Colloid Interface Sci. 206 (2014) 150-171.
[45] V. V. Yaminsky, S. Ohnishi, E. A. Vogler, R. G. Horn,. Stability of aqueous films between bubbles. Part 1. The effect of speed on bubble coalescence in purified water and simple electrolyte solutions, Langmuir 26 (2010) 8061-8074.
[46] Y. Yamaguchi, H. Kusudo, D. Surblys, T. Omori, G. Kikugawa, Interpretation of Young’s equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid, J. Chem. Phys. 150 (2019) 044701.
[47] M. Zhao, X. Yang, Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores, J. Phys. Chem. C 119 (2015) 21664-21673.
[48] T. F. Schaub, G. J. Kellogg, A. M. Mayes, R. Kulasekere, J. F. Ankner, H. Kaiser, Surface modification via chain end segregation in polymer blends, Macromolecules 29 (1996) 3982-3990.
Chapter 2
[1] H. Hölscher, D. Ebeling, U. D. Schwarz, Friction at atomic-scale surface steps: experiment and theory, Phys. Rev. Lett. 101 (2008) 246105.
[2] J. G. Vilhena, C. Pimentel, P. Pedraz, F. Luo, P. A. Serena, C. M. Pina, R. Pérez, Atomic-scale sliding friction on graphene in water, ACS nano 10 (2016) 4288-4293.
[3] W. Ouyang, A. S. de Wijn, M. Urbakh, Atomic-scale sliding friction on a contaminated surface, Nanoscale 10 (2018) 6375-6381.
[4] C. Gachot, A. Rosenkranz, R. Buchheit, N. Souza, F. Mücklich, Tailored frictional properties by Penrose inspired surfaces produced by direct laser interference patterning, Appl. Surf. Sci. 367 (2016) 174-180.
[5] J. Blass, M. Albrecht, B. L. Bozna, G. Wenz, R. Bennewitz, Dynamic effects in friction and adhesion through cooperative rupture and formation of supramolecular bonds, Nanoscale 7 (2015) 7674-7681.
[6] K. Keseroğlu, M. Çulha, Assembly of nanoparticles at the contact line of a drying droplet under the influence of a dipped tip, J. Colloid Interface Sci. 360 (2011) 8-14.
[7] Y. V. Kalinin, V. Berejnov, R. E. Thorne, Contact line pinning by microfabricated patterns: effects of microscale topography, Langmuir 25 (2009) 5391-5397.
[8] L. Guo, G. H. Tang, S. Kumar, Droplet Morphology and Mobility on Lubricant-Impregnated Surfaces: A Molecular Dynamics Study, Langmuir 35 (2019) 16377-16387.
[9] D. Daniel, J. V.Timonen, R. Li, S. J. Velling, J. Aizenberg, Oleoplaning droplets on lubricated surfaces, Nat. Phys. 13 (2017) 1020-1025.
[10] F. Schellenberger, J. Xie, N. Encinas, A. Hardy, M. Klapper, P. Papadopoulos, D. Vollmer, Direct observation of drops on slippery lubricant-infused surfaces, Soft Matter 11 (2015) 7617-7626.
[11] W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen, G. H. McKinley, A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, J. Colloid Interface Sci. 339 (2009) 208-216.
[12] E. Bormashenko, Why does the Cassie–Baxter equation apply?, Colloids Surf. A Physicochem. Eng. Asp. 324 (2008) 47-50.
[13] R. N. Wenzel, Surface roughness and contact angle, J. Phys. Chem. A 53 (1949) 1466-1467.
[14] V. Belaud, S. Valette, G. Stremsdoerfer, M. Bigerelle, S. Benayoun, Wettability versus roughness: Multi-scales approach, Tribol Int 82 (2015) 343-349.