| 研究生: |
陳世瑋 Shih-wei Chen |
|---|---|
| 論文名稱: |
不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究 Effect of casting process on the distribution of ZrCu B2 phase and mechanical properties of the Zr-Cu-Al glassy alloy |
| 指導教授: |
鄭憲清
Shian-ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 相變化誘發塑性 、雷諾數 、非晶質合金複材 |
| 外文關鍵詞: | TRIP effect, Reynold’s number, Amorphous alloy composite |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於金屬玻璃其獨特的優良性質,使其成為各國近年來炙手可熱並且積極開發的新興材料之一。但除了良好的機械性質之外,金屬玻璃缺乏塑性此一缺點大大限制了其可應用的範圍,因此許多進階研究利用複合材料的觀念,以內析出(In-situ)或是外添加(Ex-situ)的方式使金屬玻璃基地內產生第二相(Second phase),能有效地改善此一缺點。
本實驗設計分別利用傾倒式鑄造(Tilt-casting)、吸鑄式鑄造(Suction-casting)、射出成型(Injection)以及淬火(Quench)四種不同製程製備Zr47.5Cu47.5Al5與Zr48Cu47.5Al4Co0.5不同尺寸(直徑2~4mm)非晶質合金圓柱複材,先觀察由上述四種不同製程所製作之金屬玻璃複材中In-situ的體心立方之鋯銅相(BCC-ZrCu phase)及孔洞之分布情形,然後進行單軸向壓縮測試,同時並計算不同製備方式所得樣品之雷諾數(Reynolds number)與其金相結構關係,進一步釐清析出相及孔洞之尺寸及分布對其機械性質之影響。
單軸向壓縮測試結果顯示,所有製程之2mm棒材均較其他尺寸之棒材有較佳的塑性表現,而其中以傾倒式鑄造之Zr48Cu47.5Al4Co0.5 2mm棒材具有最佳表現,其塑性變形量可達16%,經由雷諾數的計算可得知,以傾倒式鑄造的雷諾數值較低,流體流動狀態較接近層流,表示流體分層流動,互不混合,因此,相較於其他製程,傾倒式鑄造製備的樣品非晶質合金基地內可以得到分布較均勻且顆粒尺寸較大的B2相,同時由於傾倒式鑄造的試片內部缺陷較少,因此具有較好的塑性。
Owing to the unique and excellent properties of bulk metallic glass (BMG), it has become hot-spot and attracted lots of countries to develop it actively in recent year. However, the disadvantage of metallic glass is lack of ductility, which limits the range of application. Therefore, many studies use the concept of composite materials, by using the in-situ or ex-situ approach to generate the second phase in metallic glass matrix to restrict the shear band propagation and so as to improve the plasticity of BMGC.
In this research, we use four different processes, tilt-casting, suction-casting, injection-casting, and directly quenching to make the different size (2~4mm) of Zr48Cu47.5Al4Co0.5 and Zr47.5Cu47.5Al5 BMGC rods. Using the four different processes to observe the distribution of holes and in-situ ZrCu B2 phase. The size and distribution of B2 phase and porosity were examined by optical microscopy as well as scanning electron microscopy. Then the mechanical properties of these BMGC rods were obtained by uniaxial compression test. In addition, the Reynolds number of each process was also estimated to figure out the formation of B2 second phase, and relate to its mechanical performance.
After uniaxial compression testing, the 2mm diameter BMGC rods made from each casting process have the better plasticity than the other diameter samples. Among all the 2mm-diameter samples, the tilt casting 2mm-diameter Zr48Cu47.5Al4Co0.5 sample present the best mechanical performance, it can reach 16% plastic deformation. Through the calculation of Reynolds number, tilt-casting has lower value of Reynolds number and the fluid flow mode close to the laminar flow. Therefore, this more stable melt flow makes the formation of ZrCu B2 phase to form a larger size and more homogeneous distribution in the amorphous matrix.
In this research also use ultrasonic testing to discuss the mechanical properties of metallic glass composite rods, such as Poisson’s ratio, shear modulus and bulk modulus etc. Among the rods by tilt casting have much better mechanical performances because of much lower defects in the rods.
[1]. J. S. C. Jang, J. Y. Ciou, T. H. Hung, J. C. Huang and X. H. Du, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Apply Physics Letters, vol.92, 2008, pp.011930-1-011930-3.
[2]. X. Du, J. C. Huang, K. C. Hsieh, J. S. C. Jang, P. K. Liaw, H. M. Chen, H. S. Chou and Y. H. Lai, “Designing Ductile Zr-Based Bulk Metallic Glasses with Phase Separated Microstructure”, Advanced Engineering material, vol.11, 2009, pp.387-391.
[3]. A. Inoue, “Bulk Amorphous Alloys”, Trans Tech Publication, vol.2, 1998, pp.28.
[4]. J.B. Li, J.S.C. Jang, S.R. J ian, K.W. Chen, J.F. Lin and J.C. Huang, “Plasticity improvement of ZrCu-based bulk metallic glass by ex situ dispersed Ta particles”, Materials Science and Engineering, vol.528, 2011, pp.8244-8248.
[5]. G. Wu, R. Li, Z. Liu, B. Chen, Y. Li, Y. Cai and T. Zhang, “Induced multiple heterogeneities and related plastic improvement by laser surface treatment in CuZr-based bulk metallic glass”, Intermetallics, vol.24, 2012, pp.50-55.
[6]. C. Li, J.S.C. Jang, J.B. Li, D.J. Pan, S.R. Jian, J.C. Huang and T.G. Nieh, “Numerical and experimental studies on the shear band intervention in zirconium based bulk metallic glass composite Zr53Cu22Ni9Al8Ta8”, Intermetallics, vol.30, 2012, pp.111-116.
[7]. J. P. Chu, J.E. Greene, J.S.C Jang, J.C. Huang, Y. L. Shen, P. K. Liaw, Y. Yokoyama, A. Inoue and T.G. Nieh, “Bendable bulk metallic glass:Effects of a thin, adhesive, strong and ductile coating”, Acta Materialia, vol.60, 2012, pp.3226-3238.
[8]. W.Y. Liu, H.F. Zhang, Z.Q. Hua and H. Wang, “Formation and mechanical properties of Mg65Cu25Er10 and Mg65Cu15Ag10Er10 bulk amorphous alloys”, Journal of Alloys and Compounds, vol.397, 2005, pp.202-206.
[9]. M. Janik-Czachor, A. Jaskiewicz, M. Dolata and Z. Werner, “Passivity and its breakdown in Al-based amorphous alloys”, Materials Chemistry and Physics, vol.92, 2005, pp348-353.
[10]. L. Zhang, Evan Ma and J. Xu, “Hf-based bulk metallic glasses with critical diameter on centimeter scale”, Intermetallics, vol.16, 2008, pp.584-586.
[11]. P. Y. Lee, C. Lo, J. S. C. Jang and J. C. Huang, “Mg-Y-Cu Bulk Nanocrystalline Matrix Composites Containing WC Particles”, Key Engineering Materials, vol.313, 2006, pp.25-30.
[12]. 吳學陞,“新興材料-塊狀非晶質合金金屬材料”,工業材料,第149期,1999年,pp.154-159.
[13]. J. Kramer, “Produced the first amorphous metal through vapor deposition”, Annln Physics, vol.19, 1934, pp.37.
[14]. A. Brenner, D. E. Couch and E. K. Williams, “Electro Deposition of Alloys”, J. Res. Nat. Bur. Stand., vol.44, 1950, pp.109.
[15]. P. Duwez and S. C. H. Lin, “Amorphous Ferromagnetic Phase in Iron-Carbon-Phosphorus Alloys”, Apply Physics Letters, vol.138, 1967, pp.4096.
[16]. W. Klement, R.H. Wilens and P. Duwes, “Thermophysical properties of bulk metallic glass-forming liquids”, Nature, vol.187, 1960, pp.869.
[17]. D.Turnbull, “Phase changes”, Solid State Physics, vol.3, 1956, pp.225.
[18]. D.Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, Journal of Physics, vol.35, 1974, pp.1-10.
[19]. D. R. Uhlmann, J.F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, Journal of Physical Chemistry, vol.7, 1966, pp.159.
[20]. H. A. Davies, “The formation of metallic glass”, Journal of Physics and Chemistry of Glasses, vol.17, 1976, pp.159.
[21]. H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, vol.41, 1970, pp.1237.
[22]. A. Inoue, “Bulk amorphous alloys with soft and magnetic properties”, Material Science Engineering, vol.226-228, 1997, pp.357.
[23]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Y-Cu Amorphous Alloys with High Mechanical Strength Produced by a Metallic Mold Casting Method”, Materials Transactions JIM, vol.32-7, 1991, pp.609.
[24]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Development of Mg based amorphous alloys with higher amounts of rate earth elements”, Materials Transactions JIM, vol.33,1992, pp.937-945.
[25]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol.29, 1998, pp.1779-11793.
[26]. R. E. Reed-Hill, Physical Metallurgy Principles, Boston, USA, 1994.
[27]. A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol.269-272, 1998, pp.855-864.
[28]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions, Materials Transactions JIM, vol.36, 1995, pp.866-875.
[29]. W. Paul and R. J. Temkin, “Amorphous germanium I. A model for the structure and optical properties”, Advance in Physics, 1973, pp.531.
[30]. K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, 1969.
[31]. R. W. Cahn, P. Hassen and E. J. Kramer, Materials Science and Technology, vol.9, New York, USA, 1991.
[32]. W. H. Wang, C. Dong and C. H. Shek, “Bulk Metallic Glasses”, Materials Science and Engineering: R, vol.44, 2004, pp.45-89.
[33]. A. Inoue, “High Strength Bulk Amorphous Alloys with High Functional Properties”, Materials Science Engineering A, vol.304, 2001, pp.1-10.
[34]. H. S. Chen, “Glass metals”, Reports on Progress in Physics, vol.43, 1980, pp.353-356.
[35]. A. Inoue, “Stabilization of Metallic Super Cooled Liquid and Bulk Amorphous Alloys”, Acta Materials, vol.48, 2000, pp.279-306.
[36]. C. T. Liu and Z. P. Lu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Material, vol.50, 2002, pp.3501-3512.
[37]. C.N. Kuo, J.C. Huang, J.B. Li, J.S.C. Jang, C.H. Lin and T.G. Nieh, “Effects of B2 precipitate size on transformation-induced plasticity of Cu–Zr–Al glassy alloys”, vol.590, 2014, pp.453-458.
[38]. N. Rott, “Note on the history of the Reynolds number”, Annual Review of Fluid Mechanics, vol. 22, 1990, pp.1–11.
[39]. V. G. Priymak, “Splitting Dynamics of Coherent Structures in a Transitional Round-Pipe Flow”, Doklady Physics, 2013, pp.457-463.
[40]. B. R. Munson, D. F. Young, T. H. Okiishi and W. W. Huebsch, “Fundamentals of Fluid Mechanics”, 2010.
[41]. V.F. Zackay, E.R. Parker, D. Fahr and R. Busch, ASM Transaction. Quart, vol.60, 1967, pp.252–259.
[42]. WorldAutoSteel, Transformation-Induced Plasticity (TRIP) Steel.
[43]. P. Gargarella, S. Pauly, M. S. Khoshkhoo, U. Kuhn and J. Eckert, “Phase formation and mechanical properties of Ti-Cu-Ni-Zr bulk metallic glass composites”, Acta Material, vol.65, 2014, pp.259-269.
[44]. J. W. Seo and D. Schryvers, “TEM investigation of the microstructure and defects of CuZr martensite. Part Ι:Morphology and twin systems ”, Acta material, vol.4, 1998, p1165-1175.
[45]. Konstantin Meyl, “Scalar Waves”, 2003.
[46]. Y. Wu, D. Q. Zhou, W. L. Song, H. Wang, Z. Y. Zhang, D. Ma, X. L. Wang and Z.P. Lu, “Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy”, Physical Review Letters, vol.109, 2012, pp.245506.
[47]. X. H. Lin and W. L. Johnson, “Formation of Ti-Zr-Cu-Ni bulk
metallic glasses”, Apply Physics, vol.78, 1995, pp.6514–6519.
[48]. J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang and J. Eckert, “Work-Hardenable Ductile Bulk Metallic Glass”, Physical Review Letters, vol.94, 2005, pp.205501.
[49]. T. Yamamoto and Y. Yokoyama, “Precipitation of the ZrCu B2 phase in Zr50Cu50-xAlx(x=0,4,6) metallic glasses by rapidly heating and cooling”, Material Research Society, 2010, pp.793-800.
[50]. Y. Wu, Y. Xiao, G. Chen, C. T. Liu and Z. Lu, “Bulk Metallic Glass Composites with Transformatiom Mediated Work-Hardening and Ductility”, Advanced Materials, vol.22, 2010, pp.2770-2773.
[51]. C. P. Kim, Y. S. Oh, S. Lee and N. J. Kim, “Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation”, Acta Materialia, vol.65, 2011, pp.304-307.
[52]. J. Das, K. B. Kim, W. Xu, B. C. Wei, Z. F. Zhang, W. H. Wang, S. Yi and J. Eckert, “Ductile Metallic Glasses in Supercooled Martensitic Alloys”, Materials Transactions, vol.47, 2006, pp.2606-2609.
[53]. D. Q. Zhou, Y. Wu, H. Wang, X. D. Hui, X. J. Liu and Z. P. Liu, “Alloying effects on mechanical properties of the Cu-Zr-Al bulk metallic glass composites”, Computational Materials Science, vol.79, 2013, pp.187-192.
[54]. Y. F. Sun, B. C. Wei, Y. R. Wang, W. H. Li, T. L. Cheung and C. H. Shek, “Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase”, Applied Physics Letters, vol.87, 2005, pp.51905.
[55]. J. B. Li, J. S. C. Jang, C. Li, S. R. Jian, P. H. Tsai, J. D. Hwang, J. C. Huang and T. G. Nieh, “Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and exsitu Ta particles”, Material Science and Engineering A, vol.551, 2012, pp.249-254.
[56]. N. Konstantinova, A. Kurochkin and P. Popel, “Viscosity and volume properties of Al-Cu melts”, Web of Conferences, vol.15, 2011, pp.1024.