跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭年宏
NIEN-HUNG HSIAO
論文名稱: 砂土受剪時音波與振波之傳遞探討
Transmission of sound waves and vibration waves in sand under direct shear test
指導教授: 張惠文
HUI-WEN ZHANG
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 103
中文關鍵詞: 振波音波波傳
外文關鍵詞: sound wave, vibration wave, wave propagation
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要係利用微音器及加速度計量得之波傳訊號,對砂土層
    中因振動或變位所產生之音波與振波之傳播特性,進行探討與測試。
    本研究利用改良式直接剪力試驗儀,以西螺砂作為試驗土樣,在
    直剪盒上裝入微音器及加速度計,以應力控制方式施加剪力,進行一
    系列的定荷重剪力試驗。本研究探討位移與剪應力、音波及振波之相
    關性等,藉以瞭解砂土受剪力時音波及振波訊號發生特性。結果顯示
    當剪應力到達試體破壞前剪應力的40%~50%會產生較大的音壓。之
    後隨著剪動位移,產生較小的音波及振波。砂土相對密度越高在相同
    正向應力下產生的音波及振波越大。在相同的條件下,剪應力增量越
    大,產生的音波及振波越大。另外,本研究進行了淺層土層中音波及
    振波現地量測試驗。音源的產生是引爆一個埋設深度為80 m 重達七
    百五十公斤的乳膠炸藥,至於量測方式係將微音器及加速度計埋置於
    距音源水平距離20 m 處,埋置深度為30 cm。結果顯示此次試驗中
    之音波係伴隨振波同時出現。說明當土層發生變位或錯動時,只要振
    動的量夠大,音波便能藉由振波向外傳遞至較遠處。


    This research used wave signals measured from microphones and
    accelerometers to investigate transmission properties of sound waves and
    vibration waves generated by shock vibration or shear displacement in
    sand layer.
    This research carried out a series of constant loading shear tests by
    means of a modified direct shear apparatus. Set a microphone and a
    accelerometer in the direct shear box to measure sound pressure
    accelerate. Siluo sand was used in the tests and the shear stress was
    applied with air cylinder. The signals of vibration and sound wave were
    measured from the direct shear tests. The results showed that when the
    shear stress has reached 40%~50% of soil strength, the higher sound
    pressure would appear. Then of values of vibration and sound would
    become smaller with the increase of shear displacement. For the sand
    with higher relative density, the vibration and sound wave would be
    getting higher with the same normal stress. Under the same condition,
    higher shear stress increment will cause higher vibration and sound wave.
    In addition, field test was performed in this research. The sound and
    vibration waves were caused by the explosion of dynamite of 750 kg
    which was imbedded at depth of 80 m. The microphone and the
    accelerometer were set apart from the sound source of 20 m, and these
    sensors were imbedded at depth of 30 cm. From the results of the
    experiment, the sound and vibration waves were appeared at the same
    time. If the generated energy of slide or movement of sand is large
    enough, the sound waves may transmit away with the vibration waves to
    a farther distance simultaneously.

    中文摘要...............................................................................................................II 英文摘要..............................................................................................................III 目錄..................................................................................................................... IV 照片目錄............................................................................................................VII 表目錄...............................................................................................................VIII 圖目錄................................................................................................................. IX 符號說明...........................................................................................................XIII 第一章 緒論..........................................................................................................1 1.1 研究動機與目的.........................................................................................1 1.2 研究方法.....................................................................................................1 1.3 論文內容.....................................................................................................2 第二章 文獻回顧.................................................................................................3 2.1 聲音量測技術於大地工程之應用.............................................................3 2.1.1 音波基本參數........................................................................................3 2.1.2 音波傳遞速度........................................................................................5 2.1.3 音波訊號之分析....................................................................................8 2.1.3.1 時間域分析.....................................................................................8 2.1.3.2 頻率域分析.....................................................................................9 V 2.1.4 波傳衰減特性......................................................................................10 2.1.4.1 空氣中音波衰減特性...................................................................10 2.1.4.2 土層中振波衰減特性...................................................................11 2.1.5 音射現象..............................................................................................13 2.2 音波之應用.................................................................................................14 2.2.1 音源之定位..........................................................................................14 2.2.1.1 區域定位法...................................................................................14 2.2.1.2 到達時間差定位法......................................................................15 2.2.1.3 三軸後德格蘭姆法......................................................................18 2.2.2 不穩定邊坡之音波量測.....................................................................20 2.2.3 微音錐貫入試驗..................................................................................21 2.2.4 土石流地聲特性之研究.....................................................................23 2.3 砂土中音波與振波傳遞之研究................................................................25 2.4 未來應用...................................................................................................26 第三章 試驗土樣、儀器設備及試驗方法.......................................................43 3.1 試驗土樣....................................................................................................43 3.2 試驗儀器與相關設備................................................................................43 3.3 試驗方法及步驟.......................................................................................49 3.3.1 直接剪力試驗中砂土之音波及振波波速量測試驗方法.................50 VI 3.3.2 裝置防砂罩微音器之校正................................................................51 3.3.3 音波及振波現地量測試驗.................................................................52 3.4 音波訊號處理...........................................................................................53 3.4.1 背景噪音之影響與校正....................................................................54 3.4.2 取樣定理.............................................................................................55 3.4.3 快速傅立葉轉換.................................................................................56 第四章 試驗結果與分析...................................................................................69 4.1 直接剪力試驗中音波及振波在砂土訊號傳遞之量測...........................69 4.1.1 背景噪音的濾除.................................................................................69 4.1.2 音壓振幅之分析.................................................................................70 4.1.3 音壓與剪動位移之關係....................................................................71 4.1.4 加速度與剪動位移之關係................................................................72 4.1.5 剪應力與剪動位移之歷時變化........................................................73 4.1.6 音壓及加速度與正向應力之關係....................................................73 4.2 音波及振波現地量測試驗結果................................................................74 第五章 結論........................................................................................................96 5.1 結論............................................................................................................96 5.2 建議............................................................................................................97 參考文獻..............................................................................................................98

    1. 日本機械学会,岩石破坏力學とその応用,第101-115 頁(1989)。
    2. 日本土質工學會,土質試驗法,第447 頁(1979)。
    3. 方治國,「音洩檢測原理應用」,檢測科技,第十六卷,第一期,
    第4-9 頁(1998)。
    4. 古秉弘,「砂土中音波傳遞與量測之研究」,碩士論文,國立中央
    大學土木工程學系,中壢(2005)。
    5. 李佳龍,「音射定位法於岩石材料之應用」,碩士論文,國立成功
    大學資源工程學系,第51-58 頁,台南 (2003)。
    6. 吳志鴻,「淺層砂土中音波傳遞特性之研究」,碩士論文,國立中
    央大學土木工程學系,中壢 (2006)。
    7. 孟河清譯,(蘇)B.C. 斯捷潘諾夫著「泥石流與泥石流體的基本特
    性及其量測方法」,科學技術文獻出版社重慶分社(1986)。
    8. 徐萬樁,噪音與振動控制,協志工業叢書,台北(1975)。
    9. 張哲胤,「乾燥砂土中音波及振波之傳遞特性」,碩士論文,國立
    中央大學土木工程學系,中壢 (2007)。
    10. 黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼,「土石流地
    聲特性之實驗研究」,中國土木水利工程學刊,第十六卷,第一期,
    第53-63 頁 (2004)。
    99
    11. 陳正興,朱惠君,「南科園區地盤振動衰減參數之量測」,南部
    科學園區振動防治策略研討會論文集,台南,第151-170 頁
    (2000)。
    12. 陳精日、章書成、葉明富,「泥石流地聲特性及NJ-2 型無線遙側
    泥石流警報器的研製」,第二屆全國泥石流學術會議論文集,第
    36-41 頁(1991)。
    13. 葉逸彬,「圓錐貫入試驗中砂土音射特性之研究」,碩士論文,國
    立中央大學土木工程學系,中壢(2004)。
    14. 廖志信,「岩石材料中音射發生源之位置探測研究」,碩士論文,
    國立成功大學土木工程研究所,台南 (1993)。
    15. 趙晉棠,通信原理,全華科技圖書股份有限公司,台北(1995)。
    16. 蔡雅惠,「基樁承受側向荷載後之表面摩擦特性」,碩士論文,國
    立中央大學土木工程學系,中壢 (2004)。
    17. 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華科技
    圖書股份有限公司,台北(2005)。
    18. 鄭玉旭、王偉哲、陳博亮,「應用主動波偵測法於土石流發生前之
    預測之初步研究」,聯合學報,第24 期,第125-135 頁(2004)。
    19. 蘇德勝,噪音原理及控制,臺隆書店,台北(2003)。
    20. Baker, L.J., and Winbow, G.A., Multipole P-wave logging in
    formations altered by drilling,” Geophysics, Vol. 53, No. 9, pp.
    100
    1207-1218 (1988).
    21. Beard, F.D., “Predicting Slides in Cut Slopes,” Western Construction,
    pp. 72 (1961).
    22. Bolt, B.A., Earthquakes: A Primer, Freeman, San Francisco,
    pp.241(1978).
    23. Chen, S.T., “Full acoustic wave train in a laboratory model of a
    borehole,” Geophysics, Vol. 47, No. 11, pp. 1512-1520 (1982).
    24. Clayton, C.R.I., Simons, N.E., and Matthews, M.C., Site Investigation,
    Intl Pubns, Westport (1982).
    25. Dixon, N., Hill, R., and Kavanagh, J., “Acoustic Emission Monitoring
    of Slope Instability : Development of an Active Waveguide System,”
    Proceedings of the Institution of Civil Engineers : Geotechnical
    Engineering, Vol. 156, No. 2, pp. 83-95 (2003).
    26. Ekimov, A., and Sabatier, J.M., “Vibration and sound signatures of
    human footsteps in building,” Journal of the Acoustical Society of
    America, Vol. 120, No. 2, pp. 762-768 (2006).
    27. Ewing, W.M., and Jardetzky, W.S., Elastic Waves in Layered Media,
    McGraw-Hill Book Co., New York, pp. 380-381 (1957).
    28. Gutowski, T.G. and Dym, C.L., “Propagation of Ground Vibration: A
    Review,” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193
    (1976).
    29. Hardy, H.R., “Application of acoustic techniques to rock mechanics
    research,” Acoustic Emission, ASTM STP505, American Society for
    Testing and Materials, pp. 41-83 (1972).
    30. Hassall, J.R., and Zaveri, K., Acoustic Noise Measurements,
    Brüel&Kjær, Nærum, Denmark, pp.18-20(1979).
    101
    31. Hou, Z., Hera, A., and Shinde, A., “Wavelet-based structural health
    monitoring of earthquake excited structures,” Computer-Aided Civil
    and Infrastructure Engineering, Vol. 21, No. 4, pp. 268-279 (2006).
    32. Hough, S.E., Earthshaking science: what we know (and don''t know)
    about earthquakes, Princeton University Press, U.S.A., pp. 43-46
    (2002).
    33. Kageyama, K., Murayama, H., Uzawa, K., Ohsawa, L., Kanai, M.,
    Akematsu, Y., Nagata, K., and Ogawa, T., “Doppler effect in flexible
    and expandable light waveguide and development of new fiber-optic
    vibration/acoustic sensor,” Journal of lightwave Technology, Vol. 24,
    No. 4, pp. 1768-1775 (2006).
    34. Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., and
    Ma, K. F., “Heat signature on the Chelungpu fault associated with the
    1999 Chi-Chi, Taiwan earthquake,” Geophysical Research Letters, Vol.
    33, L14306 (2006).
    35. Kim, D.S., and Lee, J.S., “Propagation and attenuation characteristics
    of various ground vibrations,” Soil Dynamics and Earthquake
    Engineering, Vol. 19, No. 2, pp. 115-126 (2000).
    36. Koerner, R.M., McCabbe, W.M., and Lord, A.E., “Acoustic Emission
    Behavior and Monitoring of Soils,” Acoustic Emission in
    Geotechnical Engineering Practice, ASTM STP 750, American
    Society for Testing and Materials, pp. 93-141 (1981).
    37. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall,
    Upper Saddle River, N.J. (1996).
    38. Lecture Note, Basic Concept of Sound, Brüel&Kjær, Nærum,
    Denmark, pp.6-8 (1998).
    102
    39. Lord, H., Gatley, W.S., and Evensen, H.A., “Noise Control for
    Engineers,” McGraw-Hill Inc (1980).
    40. Luo, X., Haya, H., Inaba, T., and Shiotani, T. “Seismic diagnosis of
    railway substructures by using secondary acoustic emission.” Soil
    Dynamics and Earthquake Engineering, Vol. 26, No. 12, pp.
    1101-1110 (2006).
    41. Massarsch, K.R., “Acoustic penetration testing,” Proceedings of the
    4th Geotechnical Seminar, Field Instrumentation and In-Situ
    Measurements, Nanyang Tech. Inst., Singapore (1986).
    42. Muromachi, T., “Phono-sounding apparatus-discrimination of soil type
    by sound,” Proceedings of the First European Symposium on
    Penetuation Testing, Amsterdam, ESOPT-I, Vol. 21, pp. 110-112
    (1974).
    43. Nikolaev, A.V., Belyakov, A.S., Lavrov, V.S., and Zhigglin, A.D.,
    “Geoacoustic monitoring as a means for investigating the state of the
    lithosphere and for earthquake forecasting,” Acoustical Physics, Vol.
    51, No. SUPPL. 1, pp. S122-S130 (2005).
    44. Richart, F.E., Woods, R.D., and Hall, J.R., Vibrations of Soils and
    Foundations, Prentice-Hall, Englewood Cliffs, N.J. (1970).
    45. Robertson, P.K., “In situ testing and its application to foundation
    engineering,” Canadian Geotechnical Journal, No. 23, pp. 573-594
    (1986).
    46. Ronnie, K.M., and Paul, McIntire., “Acoustic emission testing,”
    Nondestructive Testing Handbook, 2nd Ed., Vol. 5 (1986).
    47. Scott, I.G., “Basic acoustic emission,” Nondestructive Testing
    Monographs Tracts, Vol. 6, Gordon and Breach Science Publishers
    103
    (1991).
    48. Smith, B.J., Peter, R.J., and Owen, S., Acoustic and Noise Control,
    Longman Group Limited, U.K., pp. 27-34 (1982).
    49. Spanner, J.C., Brown, A., Hay, D.R. Notvest, K., and Plooock, A.,
    “Foundationals of acoustic emission testing,” Nondestructive Testing
    Handbook, 2nd Ed., Vol. 5, pp. 11-44 (1987).
    50. Starr, E.A., “Noise measurement,” Noise Control Engineering, Vol. 9,
    No. 3, pp. 100-108 (1977).
    51. Tanimoto, K., Takahashi, S., Kaneko, T., and Shiota, K., “Impulsive
    breaking wave forces on an inclined pile exerted by random waves.”
    Proceedings of the Coastal Engineering Conference, Vol. 3, pp.
    2282-2302 (1987).
    52. Technical Document, Microphone Handbook, Brüel&Kjær, Nærum,
    Denmark, pp.2-8(1996).
    53. Tringale, P.T., “Soil identification in-situ using an acoustic cone
    penetrometer,” Ph.D. Dissertation, University of California, Berkeley
    (1983).
    54. Villet, W.C.B., “Acoustic emission during the static penetration of
    soils,” Ph.D. Dissertation, University of California, Berkeley (1981).
    55. Winbow, G. A., “Theoretical study of acoustic S-wave and P-wave
    velocity logging with conventional and dipole sources in soft
    formations,” Geophysics, Vol. 53, No. 10, pp. 1334-1342 (1988).
    56. Worth, C.P., “Interpretation of In Situ Soil Test,” 24th Rankine Lecture,
    Geotechnique, Vol. 34, pp. 449-489 (1984).

    QR CODE
    :::