| 研究生: |
張博富 Bo-fu Chang |
|---|---|
| 論文名稱: |
摻雜金屬鑭改質LiFePO4/C鋰離子電池陰極材料 Doping lathnaum-ion to modify LiFePO4/C composite Li-ion cathode material |
| 指導教授: |
費定國
George Ting-Kuo Fey |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 金屬鑭摻雜 、磷酸亞鐵鋰 、陰極材料 、有機酸碳源 |
| 外文關鍵詞: | LiFePO4, Cathode material, Carbon, Lathanum doping |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
吾人採用固態高溫法合成,以碳酸鋰、草酸亞鐵和磷酸二氫銨作為起始物並加入硝酸鑭作為摻雜用之金屬來源,採用丙二酸與癸二酸兩種有機酸作為碳源製備LiFe0.99La0.01PO4/C鋰離子複合陰極材料。吾人選用X光繞射分析儀(XRD)、總有機碳分析儀(TOC)、微分掃描熱量分析儀(DSC)、掃描式電子顯微鏡(FE-SEM)、穿透式電子顯微鏡(TEM)、四點探針導電度計、拉曼光譜儀、慢速循環伏安法等儀器對於此項材料之物性與電化學分析。
實驗結果可知,以高溫固態法摻雜1 mole%金屬鑭改質LiFePO4於873 K煆燒12小時為最佳製程條件;由XRD結果顯示摻雜後之材料其晶體結構不變,且有效提升整體導電度(~10-5 S cm-1);電池性能測試結果,當丙二酸60 wt.%為碳源和癸二酸36 wt.%為碳源時,初始電容量分別為151 和145 mAh g-1,相對於未改質之LiFePO4,其初始電容量僅有100 mAh g-1,可見材料經改質後初始電容量有效提升。由SEM和TEM觀察中得知,材料經碳處理後可得3~6 nm的碳膜,且顆粒表面經EDS分析出只含碳,間接證實金屬鑭以摻雜方式而非塗佈方式改質LiFePO4。拉曼光譜儀分析結果顯示,材料經丙二酸60 wt.%碳處理後ID/IG值為96.8,以癸二酸36 wt.%處理後ID/IG值為93.2,且由SAED分析佐證當ID/IG值越小時材料含似石墨化碳程度越高。熱穩定性方面,以丙二酸60 wt.%處理LiFe0.99La0.01PO4時,其放熱量為103.9 J g-1;若以癸二酸36 wt.%為碳源時,總放熱量為93.7 J g-1。CV測試結果顯示,氧化與還原峰僅差0.26 V,顯示極化現象很小,可佐證當丙二酸和癸二酸為碳源時,長循環測試結果分別為513次(C.R.=80 %)與485次(C.R.=96 %),如此優異的循環穩定度。由以上結果顯示,適當的摻雜金屬鑭與碳添加量確實能有效地提高導電度和放電電容量,進而增進循環穩定度。
In order to enhance the capability of LiFePO4 materials, we attempted to coat carbon and dope lanthanum-ion by a high temperature solid-state method. The starting materials of the LiFe1-xLaxPO4/C composite were synthesized using lithium carbonate, iron (II) oxalate dihydrate, ammonium dihydrogen phosphate and lanthanum nitrite.
The purity of LiFe0.99La0.01PO4/C was confirmed by XRD analysis. Galvanostatic cycling and conductivity measurements were used to evaluate the material’s electrochemical performance. A galvanostatic charge-discharge study was carried out between 4.0 and 2.8 V. The best cell performance was delivered by the sample doped 1 mole% lanthanum-ion and coated with 60 wt.% malonic acid and/or 36 wt.% sebasic acid. Its first-cycle discharge capacity was 151 mAh g-1 at a 0.2 C-rate with malonic acid as a carbon source and 145 mAh g-1 with sebasic acid. And the cyclicability of cathodes coated by malonic acid and sebasic acid are 513 cycles(C.R.=80 %) and 485 cycles(C.R.=96 %). The residual carbon in the composite was measured by total organic carbon (TOC) and Raman spectral analysis. The actual carbon content of LiFePO4 was 1.65 wt.% with the addition of 60 wt.% malonic acid and 4.69 wt.% with the addition of 36 wt.% sebasic acid. The doped samples were measured by Raman spectral analysis. The intense broad bands at 1330 and 1600 cm-1 are assigned to the D and G bands of residual carbon in LiFe0.99La0.01PO4/C composites, respectively. The lowest peak intensity ratio (ID/IG) of the doped powders was 0.968 for malonic acid and 0.932 for sebasic acid.
The products’ morphologies were analyzed by SEM and TEM/SAED/EDS. Compared to bare LiFePO4, the particle size of the products decreased as the amount of malonic acid and/or sebasic acid added was increased. However, adding too much malonic acid or sebasic acid contributed to an increase in particle growth. The EDS carbon map shows a uniform distribution of carbon in the sample on the surface of the composite particles. The DSC patterns were fully charged for 4.5 V, the test range between 373 K to 673 K in N2 atmosphere. The total exothermic heat when malonic acid was used as the carbon source was only 103.9 J g-1 and 93.7 J g-1 when sebasic acid was used. The TEM/EDS results show that the particles in the dark region are LiFe0.99La0.01PO4 with a trace of carbon and the grayish region are carbon only. To produce LiFe0.99La0.01PO4 with carboxylic acid and sebasic acid as a carbon source not only increase the overall conductivity (~ 10-5 S cm-1) of the materials, but also enhances the cell performance and cyclability.
1. http://www.iek.itri.org.tw工研院產業經濟與趨勢研究中心
2. J.M. Tarascon and M. Armand, Nature 414(2001)359
3. http://www.taiwanbattery.org.tw/台灣電池協會
4. 吕正中 , 周震涛, 化学通报, 第67卷(2004)
5. M. Thackeray, Nature mater. 1 (2002).
6. J. Cho, T. J. Kim and B. Park, Angew. Chem. Int. Ed. 40(2001)3367
7. M.M. Thackeray, S.H. Yang, A.J. Kahaian, K.D. Kepler, E. Skiner, J.T. Vaughey, S.A. Hackney, Electrochem. Solid-State Lett. 1 (1998) 7
8. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144(1997)1188
9. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B.
Goodenough, J. Electrochem. Soc. 144(1997)1609
10..費定國,“鋰離子電池在電動車市場之展望”,工業材料雜,229 (2005)141
11..廖國宏, 碩士論文, 國立暨南大學, 台灣, 中華民國(2004)
12. M.A.E. Sanchez, G.E.S. Brito, M.C.A. Fantini, G.F. Goya and J.R. Matos,
Solid State Ionics 177(2006)497
13. H.C. Shin, W.I. Cho, H. Jang, Electrochimica Acta 52(2006)1472
14. A.S. Andersson, B. Kalska, L. Häggström, J. O. Thomas, Solid State
Ionics 130(2000)41
15. S.S. Zhang, J.L. Allen, K. Xu, T.R. Jow, J. Power Sources 147(2005)234
16. Y.H. Sun., X.Q. Liu, Chinese Chemical Lett. 17(2006)1093
17. G. Wang, Y. Cheng, M. Yan, Z. Jiang, J. Solid State Electrochem. 11(2006)457
18. N. Penazzi, M. Arrabito, M. Piana, S. Bodoardo, S. Panero, I. Amadei, Journal of the European Ceramic Society 24(2004)1381
19. A. Nytén and J. O. Thomas, Solid State Ionics 177(2006)1327
20. D. Wang, Z. Wang, X. Huang, L. Chen, J. Power Sources 146(2005)580
21. W. Ojczyk, J. Marzec, J. Dvgas, F. Krok, R.S. Liu, Materials Science-Poland 24(2006)103
22. W. Ojazyk, J. Marzec, K. Swierczek, J. Molenda, Defect and Diffusion Forum 237(2005)1299
23. A.S. Andersson, J.O. Thomas, J. Power Sources 97-98(2001)498
24. X.Y. Chang, Z.X. Wang, X.H. Li, L. Zhang, H.J. Guo, W. J. Peng, Materials Research Bulletin 40(2005)1513
25. A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, K. Itoh, M. Yonemura, T. Kamiyama, Chem. Mater. 18(2006)804
26. J. Hong, C. Wang, U. Kasavajjula, J. Power Sources 162 (2006) 1289
27. D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Electrochim. Acta 50(2005)2955
28. H. Xie, Z. Zhou, Electrochimica Acta 51(2006)2063
29. S.Y. Chung, J.T. Blocking, Y.M. Chiang, Nature mater. 1(2002)123
30. F. Croce, A. D’Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, Electrochem. Solid-State Lett. 5(2002)A47
31. K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, K.T. Kang, H.G. Kim, Solid State Comm. 129(2004)311
32. 庄大高, 赵新兵, 谢健, 涂健, 朱铁军, 曹高劭, Acta Phys. Chim. Sin. 22(2006)840
33. M.S. Islam, D. J. Driscoll, C. A. J. Fisher, P. R. Slater, Chem. Mater. 17(2005)5085
34. M. Zhang, L.F. Jiao, H.T. Yuan, Y.M. Wang, J. Guo, M. Zhao, W. Wang, X.D. Zhou, Solid State Ionics 17(2006)3309
35. G. X. Wang, S. Bewlay, S. A. Needham, H. K. Liu, R. S. Liu, V. A. Drozd, J.F. Lee, and J. M. Chen, J. Electrochem. Soc. 153(2006)A25
36. S.J. Kwon, C.W. Kim, W.T. Jeong, K.S. Lee, J. Power Sources 137 (2004) 93
37. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, Prentice Hall Publishers, New Jersey, USA, 2001, 3rd edn., ch. 5.2
38. A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochem. Soc., 148 (2001) A224
39. K.F. Hsu, S.Y. Tsay and B.J. Hwang,J . Ma t e r . C h em. , 14(2004)2690
40. C. M. Julien, K. Zaghib, A. Mauger, M. Massot, A. Ait-Salah, M. Selmane, F. Gendron, J. Appl. Phys., 100 (2006) 063511
41. Z. Chena, J.R. Dahn, J. Electrochem. Soc., 149 (2002) A1184
42. S.T. Myung, S. Komaba,, N. Hirosaki, H. Yashiro, N. Kumagai, Electrochim. Acta, 49 (2004) 4213
43. R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, J. Electrochem. Soc., 152 (2005) A607
44. J.D. Wilcox, M.M. Doeff, M. Marcinek, R. Kostecki, J. Electrochem. Soc., 154 (2007) A389
45. T. Nakamura, Y. Miwa, M. Tabuchi, Y. Yamada, J. Electrochem. Soc., 153 (2006) A1108
46. M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Electrochem. Solid-State Lett., 6 (2003) A207
47. D.D. MacNeila, Z. Lub, Z. Chenb, J.R. Dahn, J. Power Sources, 108 (2002) 8