跳到主要內容

簡易檢索 / 詳目顯示

研究生: 歐識賢
Ahmad Hanif Firdaus
論文名稱: Fast Pyrolysis of Palm Kernel Shell Biomass in Fluidized Bed Reactor
指導教授: 曾重仁
Chung-Jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 141
中文關鍵詞: 生質能棕梠殼生質油熱裂解
外文關鍵詞: Biomass, palm kernel shell, fast pyrolysis, bio-oil
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    在這篇論文中,以流化床反應器及陶瓷球作為流化介質,且以CO2 作為流化氣體去熱裂解
    棕梠殼(PKS),研究的目的為找出反應器溫度 (350~500 ºC)、流化氣體流速 (5-15
    liter/min)及昇熱速率 (1, 5, 10 K/min) 對熱裂解後各項產物(生質油、生質氣體及生質能
    碳)含量的影響。PKS的產物含量分析是依照美國材料和試驗協會(ASTM)標準辦法分析。在這次
    研究成果顯示,生質油在反應器溫度為500 ºC且CO2流量為10 liter/min能得到最大的產量
    (20.43 wt.%),而在這樣的操作條件下,生質能碳為35.96 wt.%而生質氣為43.61 wt.%。且生
    質能碳的含量會隨著反應器溫度和CO2流量增加而減少,反之生質氣體含量則是會隨著反應器
    溫度和CO2流量增加而增加。從TGA分析可以觀察到,重量損失分成三個部分。首先發生在100
    ºC到220 ºC此階段為水氣及雜質的蒸發。再者是在240 ºC到400 ºC為纖維素及半纖維素的分解
    和最後400 ºC到900 ºC為木質素的分解。DTGA的部分,可以觀察到兩個很明顯的峰值,第一個
    為揮發掉半纖維素的可揮發物質,第二個為揮發掉纖維素的可揮發物質。而在DTGA中隨著昇溫
    速率的提升,會使這兩個峰值往右提升,在1 K/min第一和第二個峰值發生在 280 ºC and
    380ºC 在 5 K/min 發生在 305 ºC and 390 ºC 及 310 ºC and 405 ºC 在 10 K/min。在探討
    生成物的組成成分,生質油部分碳氫氮氧成分分別為:67.70 wt.%、9.70wt.%、0.9wt.%和
    21.7wt.%,在生質能碳的部分擁有較高的碳含量,大概在62.87wt.%左右,其他元素組成則有
    ,2.54wt.%的氫、0.56wt.%的氧、0.01wt.%的硫和10.80wt.%的氧,PKS成分分析部分,有
    23.18wt.%是灰燼、3.30wt.%是水氣、17.86wt.%是揮發物及58.96wt.%為碳化物,且PKS擁有相
    當高的熱值,約為23.56MJ/kg。當使用CO2當流化氣體時,所產出的生質氣體成分組成,跟先
    前研究做出來的結果相符,大部分產出物為CO2(超過50 vol.%),剩下主要為CO還有少量的CH4
    和H2


    關鍵字:生質能、棕梠殼、生質油、熱裂解


    ABSTRACT

    In this thesis, palm kernel shell (PKS) biomass are pyrolyzed in a fast pyrolysis system using
    fluidized bed reactor and ceramic balls as fluidizing medium, with CO2 as fluidization gas. The
    purpose of this research is to find the effect of operating parameters, such as reactor temperature (350º
    - 550ºC), fluidizing gas flow rate (5-15 liter/min) and heating rates (1, 5, 10 K/min) on the yield of
    each pyrolysis product (bio-oils, gas, and char). The composition of PKS biomass and their product are
    investigated according to ASTM (American Society for Testing and Materials) standard methods. The
    result shows that the maximum bio-oil yield is 20.4 wt.%, occurred at 500ºC and the flow rate of CO2
    is 10 liter/min, the other product are char with 36.0 wt.% and gas with 43.6 wt.%. Char decreases
    with increasing reactor temperature and CO2 flow rate. A opposite, the gas product increases with
    increasing reactor temperature and CO2 flow rate above 10 liter/min. From TG (thermogravimetry) and
    DTG (differential thermogravimetry) analysis, the weight loss are generally divided into 3 parts. First,
    occurred from 100ºC to 220ºC, presented the moisture and extractive evaporations. The second weight
    loss occurred at 240ºC - 400ºC, the thermal decomposition of cellulose and hemicellulose and the
    third, the weight loss above 400ºC until 900ºC is mainly due to the decomposition of lignin. The DTG
    curves have two peaks. The first peak is assigned to devolatilization of hemicellulose, while the second
    peak is cellulose. The effects of the heating rate on the DTG curve and maximum decomposition rate
    are investigated. At higher heating rates, individual conversions are reached at higher temperatures.
    For the heating rate of 1 K/min, the first and second peak occurred at 280 ºC and 380ºC. For 5 K/min,
    they occurred at 305 ºC and 390 ºC. They occurred at 310 ºC and 405 ºC for 10 K/min. The maximum
    of the decomposition rate is also slightly shifted towards higher temperature. CHNO content of bio oils
    are 67.70 wt.%, 9.70 wt.%, 0.90 wt.%, and 21.70 wt.%, respectively. Bio-char have high carbon
    content, around 62.87 wt.%, other elemental compositions are 2.54 wt.% of hydrogen, nitrogen with
    0.56 wt.%, 0.01 wt.% for sulfur, and oxygen with 10.80 wt.%. Proximate analysis of PKS bio char gets
    23.18 wt.% of ash, 3.30 wt.% of moisture, also HHV, volatile matter, and fixed carbon with 23.56
    MJ/kg, 17.86 wt.%, and 58.96 wt.%, respectively. When using CO2 utilized as fluidization gas, the gas
    product has compositions similar to previous study, and consists mostly of CO2 (Over 50 vol.%),
    followed by CO, and little amount of CH4 and H2.



    Keywords: Biomass, palm kernel shell, fast pyrolysis, bio-oil

    TABLE OF CONTENTS CHINESE ABSTRACT .......................................................................................................................... i ABSTRACT ............................................................................................................................................ ii ACKNOWLEDGEMENTS .................................................................................................................. iii TABLE OF CONTENTS ....................................................................................................................... v LIST OF TABLES ............................................................................................................................... viii LIST OF FIGURES ............................................................................................................................... xi LIST OF SYMBOLS ........................................................................................................................... xiv CHAPTER 1 INTRODUCTION ........................................................................................................... 1 1.1 Background ..................................................................................................................................... 1 1.2 Literature Review ............................................................................................................................ 5 1.3 Motivation ..................................................................................................................................... 12 CHAPTER 2 METHODOLOGY ........................................................................................................ 14 2.1 Experimental Method .................................................................................................................... 14 2.2 Material Preparation ...................................................................................................................... 14 2.3 Material Analysis .......................................................................................................................... 17 2.4 TG and DTG Analysis .................................................................................................................. 24 2.5 Experimental Set Up ..................................................................................................................... 24 2.6 Experimental Condition ................................................................................................................ 34 2.7 Fast Pyrolysis System ................................................................................................................... 35 vi 2.8 Product Collection ........................................................................................................................ 36 2.9 Product Analysis ........................................................................................................................... 39 2.10 Experimental Procedure .............................................................................................................. 47 CHAPTER 3 RESULTS AND DISCUSSIONS ................................................................................. 49 3.1 Proximate, Ultimate and Lignocellulosic Composition Analysis of PKS Biomass ..................... 49 3.2 Physical properties measurement of PKS Biomass ...................................................................... 60 3.3 Thermogravimetric and Differential Thermogravimetry Analysis ............................................... 62 3.4. Oily and Aqueous Phase .............................................................................................................. 69 3.5 Product Yields of Biomass Pyrolysis ............................................................................................ 70 3.5.1 Effect of Reactor Temperature on Product Distribution of PKS Biomass ............................. 70 3.5.2 Effect of Fluidization Gas Flow Rate on Product Distribution of PKS Biomass .................. 76 3.6 Energy Consumptions ................................................................................................................... 79 3.6.1 Energy Consumption in Grinding Process ............................................................................. 79 3.6.2 Energy Consumption in Pyrolysis Process ............................................................................. 84 3.6.3 Power Consumption in Condensation Process ....................................................................... 86 3.6.4 Total Energy Requirement .................................................................................................... 89 3.7 Product Analysis of PKS Biomass Pyrolysis ................................................................................ 91 3.7.1 Bio-oils Products .................................................................................................................... 91 3.7.1.1 Elemental Analysis, Water, Solid, and Ash Content Measurement of PKS Bio-oils ...... 98 3.7.1.2 Physical Properties Measurement of PKS Bio-oil ......................................................... 100 3.7.2 Gas Product .......................................................................................................................... 101 3.7.2.1 Effect of Reactor Temperature on Gas Product Compositions of PKS Biomass. ........ 102 3.7.2.2 Effect of Fluidization Gas Flow Rate on Gas Product Compositions of PKS Biomass 103 3.7.3 Char Product ......................................................................................................................... 104 vii CHAPTER 4 CONCLUSIONS AND SUGGESTIONS .................................................................. 108 4.1 Conclusions ................................................................................................................................. 108 4.2 Suggestions ................................................................................................................................. 109 REFERENCES ................................................................................................................................... 110

    REFERENCES


    [1] Demirbas A, “Correlations between carbon dioxide emissions and carbon contents of
    fuels”, Energy Source, Vol. 1, pp. 421–427, 2006.
    [2] Rehman S, Bader MA, Al-Moallem SA, “Cost of solar energy generated using PV
    panels”, Renewable Sustainable Energy Reviews, Vol. 11, pp. 1843-1857, 2007.
    [3] Demirbas A, “Combustion systems for biomass fuel”, Energy Source, Vol. 29, pp. 303–
    312, 2007.
    [4] Sanchez ME, Lindao E, Margaleff D, Martinez O, Mora A, “Pyrolysis of agricultural
    residues from rape and suflowers: production and characterization of bio-oils and
    biochar soil management”, Journal of Analytical and Applied Pyrolysis, Vol. 85, pp.
    142–144, 2009.
    [5] Wang P, Zhan S, Yu H, Xue X, Hong N, “The effects of temperature and catalyst on the
    pyrolysis of industrial wastes (herb residue)”. Bioresource Technology, Vol. 101, Pp.
    3236–3241, 2010.
    [6] Lu A, Yang XL, Zhu ZF, “Analysis on chemical and physical properties of bio-oil
    pyrolyzed from rice husk”, Journal of Analytical and Applied Pyrolysis, Vol. 82, pp.
    191–198, 2008.
    [7] Guo X, Wang S, Wang Q, Guo Z, Luo Z, “Properties of bio-oil from fast pyrolysis of
    rice husk”, Chinese Journal of Chemical Engineering, Vol. 19. pp. 116–121, 2011.
    [8] Zheng JL, “Bio-oil from fast pyrolysis of rice husk: yields and related properties and
    improvement of the pyrolysis system”, Journal of Analytical and Applied Pyrolysis,
    Vol. 80, pp. 30–35, 2007.
    [9] Zheng JL, Yi WM, Wang NN, “Bio-oil production from cotton stalk”, Energy
    Conversion and Management, Vol. 49, pp. 1724–1730, 2008. 111

    [10] Uzun BB, Sarioglu N, “Rapid and catalytic pyrolysis of corn stalks”, Fuel Processing
    Technology, Vol. 90, pp. 705–716, 2009.
    [11] Tsai WT, Lee MK, Chang YM, “Fast pyrolysis of rice husks: product yields and
    compositions”, Bioresource Technology, Vol. 98, pp. 22–28, 2007.
    [12] Febriansyah H. et al, “Gama stove: biomass stove for palm kernel shells in Indonesia”.,
    Energy Procedia, Vol. 47, pp. 123-132, 2014.
    [13] Akhtar J, Amin NS, “A review on operating parameters for optimum liquid oil yield in
    biomass pyrolysis”, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 5101-
    5109, 2012.
    [14] Maher. K.D, Bressler. D.C, “Pyrolysis of triglyceride materials for the production of
    renewable fuels and chemicals”, Bioresources Technology, Vol. 98, pp. 2351–2368,
    2007.
    [15] Zhang Q, Chang J, Wang T.J, Xu Y, “Review of biomass pyrolysis oil properties and
    upgrading research”, Energy Conversion Management, Vol. 48, pp. 87–92, 2007.
    [16] Bridgwater AV, “Biomass fast pyrolysis”, Thermal Sciences, Vol. 8, pp. 21–49, 2004.
    [17] Czernik S, Bridgwater AV, “Overview of applications of biomass fast pyrolysis oil”,
    Energy & Fuels, Vol. 18, pp. 590–598, 2004.
    [18] Ozbay N, Apaydin-Varol E, Uzun BB, Putun AE, “Characterization of bio-oil obtained
    from fruit pulp pyrolysis”, Energy, Vol. 33, pp. 1233–1240, 2008.
    [19] Islam MR, Tushar MSHK, Haniu H, “Production of liquids fuels and chemicals from
    pyrolysis of Bangladeshi bicycle/rickshaw tire wastes”, Journal of Analytical and
    Applied Pyrolysis, Vol. 82, pp. 96–109, 2008.
    [20] Wu L, Guo S, Wang C, Yang Z, “Production of alkanes (C7–C29) from different part of
    poplar tree via direct deoxy-liquefaction”, Bioresource Technology, Vol. 100, pp. 2069–
    2076, 2009. 112

    [21] Qiang L, Wen-Zhi L, Xi-Feng Z, “Overview of fuel properties of biomass fast pyrolysis
    oils”, Energy Conversion and Management, Vol. 50, pp. 1376–1383, 2009.
    [22] Rocha JD, Luengo CA, Snape CE, “The scope for generating bio-oils with relatively
    low oxygen contents via hydrpyrolysis”, Organic Geochemistry, Vol. 30, pp. 1527–
    1534, 1999.
    [23] Zhang SP, Yan YJ, Li TC, Ren ZW, “Upgrading of liquid fuel from the pyrolysis of
    biomass”, Bioresource Technology, Vol. 96, pp. 545–50, 2005.
    [24] Elliott DC, “Historical developments in hydroprocessing bio-oils”, Energy & Fuels,
    Vol. 21, pp. 1792–1815, 2007.
    [25] Elliott DC, Hart TR, “Catalytic hydroprocessing of chemical models for bio-oil”,
    Energy & Fuels, Vol. 23, pp. 631–637, 2009.
    [26] Adjaye JD, Bakhshi NN, “Production of hydrocarbons by catalytic upgrading of a fast
    pyrolysis bio-oil. Part I: conversion over various catalysts”, Fuel Processing
    Technology, Vol. 45, pp. 185–202, 1995.
    [27] Adjaye JD, Bakhshi NN, “Production of hydrocarbon by catalytic upgrading of a fast
    pyrolysis bio-oil. 2. Comparative catalyst performance and reaction pathways”, Fuel
    Processing Technology, Vol. 45, pp. 185–202, 1995.
    [28] Hew KL, Tamidi AM, Yusup S, Lee KT, Ahmad MM, “Catalytic cracking of bio-oil to
    organic liquid product (OLP)”, Bioresource Technology, Vol. 101, pp. 8855–8858,
    2010.
    [29] Perego Carlo, Bosetti Aldo, “Biomass to fuels: The role of zeolite and mesoporous
    materials”, Microporous and Mesoporous Materials, Vol. 144, pp. 28–39, 2011.
    [30] Luque R, Clark JH, Yoshida K, Gai PL, “Efficient aqueous hydrogenation of biomass
    platform molecules using supported metal nanoparticles on Starbons (R)”. Chemical
    Communications, pp. 5305–5307, 2009. 113

    [31] Vispute TP, Huber GW, “Production of hydrogen, alkanes and polyols by aqueous
    phase processing of wood-derived pyrolysis oils”, Green Chemistry, Vol. 11, pp. 1433–
    1445, 2009.
    [32] Isahak W.N.R.W, Hishama M.W.M, Yarmo MA, Hin TY, “A review on bio-oil
    production from biomass by using pyrolysis method”, Renewable and Sustainable
    Energy Reviews, Vol. 16, pp. 5910–5923, 2012.
    [33] Zhang Le, Liu Ronghou, Yin Renzhan, Mei Yuanfei, “Upgrading of bio-oil from
    biomass fast pyrolysis in China: A review”, Renewable and Sustainable Energy
    Reviews, Vol. 24, pp. 66–72, 2013.
    [34] Balat Mustafa, Balat Mehmet, Kırtay Elif, Balat Havva, ”Main routes for the thermo
    conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems”, Energy
    Conversion and Management, Vol. 50, pp. 3147-3157, 2009.
    [35] Yang S. I, Wu M. S, Wu C. Y, “Application of Biomass Fast Pyrolysis Part I: Pyrolysis
    Characteristics and Products”, Energy, pp. 1-10, 2014.
    [36] Pattiya Adisak, “Bio-oil production via fast pyrolysis of biomass residues from cassava
    plants in a fluidised-bed reactor”, Bioresource Technology, Vol. 102, pp. 1959–1967,
    2011.
    [37] Miao Xiaoling, Wu Qingyu, Yang Changyan, “Fast pyrolysis of microalgae to produce
    renewable fuels”, Jounal of Analytical and Applied Pyrolysis, Vol. 7, pp. 855–863,
    2007.
    [38] Pan P, Hu CW, Yang WY, Li YS, Dong LL, Zhu LF, et al, “The direct pyrolysis and
    catalytic pyrolysis of Nannochloropsis sp residue for renewable bio-oils”, Bioresource
    Technology, Vol. 101, pp. 4593–4599, 2010. 114

    [39] Peng W, Wu Q, Tu P, Zhao N, “Pyrolytic characteristics of microalgae as renewable
    energy source determined by thermogravimetric analysis”, Bioresource Technology,
    Vol. 80, pp. 1–7, 2001.
    [40] Wu Q, Dai J, Shiraiwa Y, Sheng G, Fu J, “A renewable energy source hydrocarbon
    gases resulting from pyrolysis of the marine nanoplanktonic alga emiliania huxleyi”,
    Journal of Applied Phycology, Vol. 11, pp. 137–142, 1999.
    [41] Grierson S, Strezov V, Ellem G, McGregor R, Herbertson J, “Thermal characterization
    of microalgae under slow pyrolysis conditions”, Journal of Analytical and Applied
    Pyrolysis, Vol. 85, pp. 118–123, 2009.
    [42] Luo Zhongyang, Wang Shurong, Liao Yanfen, Zhou Jinsong, Gu Yueling, Cen Kefa,
    “Research on biomass fast pyrolysis for liquid fuel”, Biomass and Bioenergy, Vol. 26,
    pp. 455 – 462, 2004.
    [43] Xiu Shuangning, Shahbazi Abolghasem, “Bio-oil production and upgrading research: A
    review, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 4408-4414, 2012.
    [44] Le´de´ Jacques, Broust Francois, Ndiaye Fatou-Toutie, Ferrer Monique, ‘’Properties of
    bio-oils produced by biomass fast pyrolysis in a cyclone reactor”, Fuel, Vol. 86, pp.
    1800-1810, 2007.
    [45] Wang Shurong, Guo Xiujuan, Wan Kaige, Luo Zhongyang, “Influence of the interaction
    of components on the pyrolysis behavior of biomass”, Journal of Analytical and
    Applied Pyrolysis, Vol. 91, pp. 183-189, 2011.
    [46] Zhang Huiyan, Xiao Rui, Wang Denghui, He Guangying, Shao Shanshan, Zhang
    Jubing, Zhong Zhaoping, “Biomass fast pyrolysis in a fluidized bed reactor under
    N2,CO2, CO, CH4 and H2 atmospheres”, Bioresource Technology, Vol. 102, pp. 4258-
    4284, 2012. 115

    [47] Zheng Ji-Lu, Wei Qin, “Improving the quality of fast pyrolysis bio-oil by reduced
    pressure distillation”, Biomass and Bioenergy, Vol. 35, pp. 1804-1810, 2011.
    [48] Ying Xu, Tiejun Wang, Longlong Ma, Guanyi Chen, “Upgrading of fast pyrolysis
    liquid fuel from biomass over Ru/γ-Al2O3 catalyst”, Energy Conversion and
    Management, Vol. 55, pp. 172-177, 2012.
    [49] Sabil K.M, Aziz Muafah A, Lal Bhajan, Uemura Yoshimitsu, “Synthetic indicator on
    the severity of torrefaction of oil palm biomass residues through mass loss
    measurement”, Applied Energy, Vol. 111, pp. 821–826, 2013.
    [50] Sabil K.M, Aziz Muafah A, Lal Bhajan, Uemura Yoshimitsu, “Effects of torrefaction on
    the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and
    kernel shell”, Biomass and Bioenergy, Vol. 56, pp. 351-360, 2013.
    [51] Kim Seon-Jin, Jung Su-Hwa, Kim Joo-Sik, “Fast pyrolysis of palm kernel shells:
    Influence of operation parameters on the bio-oil yield and the yield of phenol and
    phenolic compounds”. Bioresource Technology, Vol. 101, pp. 9294–9300, 2010.
    [52] Asadullah Mohammad, Rasid Nurul Suhada Ab, Kadir Sharifah Aishah Syed A,
    Azdarpour Amin, “Production and detailed characterization of bio-oil from fast
    pyrolysis of palm kernel shell”, Biomass and Bioenergy, Vol. 59, pp. 316-324, 2013.
    [53] Masiá A.A. Tortosa, Buhre B.J.P, Gupta, R.P, Wall, T.F, “Characterising ash of
    biomass and waste”, Fuel Processing Technology, Vol. 88, pp. 1071–1081, 2007.
    [54] Lu Q, Li WZ, Zhu XF, “Overview of fuel properties of biomass fast pyrolysis oils”.
    Energy Conversion Management, Vol. 50, pp. 1376-1383, 2009.
    [55] Abnisa F, Wan Daud WMA, Husin WNW, Sahu JN, “Utilization possibilities of palm
    shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis
    process”, Biomass Bioenergy, Vol. 35(5), pp. 1863-1872, 2011. 116

    [56] Abnisa F, Wan Daud WMA, Husin WNW, Sahu JN, “Optimization and characterization
    studies on bio-oil production from palm shell by pyrolysis using response surface
    methodology”, Biomass Bioenergy, Vol. 35(8), pp. 3604-3616, 2011.
    [57] Raveendran K, Ganesh A, Khilar KC, “Pyrolysis characteristics of biomass and biomass
    components”, Fuel, Vol. 75, pp. 987-998, 1996.
    [58] Yu Li Hong, Jie Yang Yong, Wei Ren Zheng, “Online upgrading of organic vapors
    from the fast pyrolysis of biomass”, Journal Fuel Chemical Technology, Vol. 36(6), pp.
    666-671, 2008.
    [59] Sipilä K, Kuoppala E, Fagernäs L, Oasmaa A, “Characterization of biomass-based flash
    pyrolysis oils”, Biomass Bioenergy, Vol. 14, pp. 103-113, 1998
    [60] Yanik J, Kornmayer C, Saglam M, Yüksel M, “Fast pyrolysis of agricultural wastes:
    characterization of pyrolysis products”, Fuel Process Technology, Vol. 88, pp. 942-947,
    2007.
    [61] Nokkosmaki M, Kuoppala ET, Leppämäki EA, Krause A, “Catalytic conversion of
    biomass pyrolysis vapours with zinc oxide”, Journal Analitical Applied Pyrolysis, Vol.
    55, pp. 119-131, 2000.
    [62] Sulaiman, F, Abdullah, N, “Optimum conditions for maximising pyrolysis liquids of oil
    palm empty fruit bunches”, Energy, Vol. 36, pp. 2352-2359, 2011.
    [63] Abdullah N, Gerhause H, Sulaiman F, “Fast pyrolysis of empty fruit bunches”, Fuel,
    Vol. 89, pp. 2166–2169, 2010.
    [64] Wang X, Kersten SRA, Prins W, Swaaij W, “Biomass pyrolysis in a fluidized bed. Part
    2: experimental validation of model results”, Ind Eng Chem Res, Vol. 44, pp. 8786-
    8795, 2005. 117

    [65] Chhiti Younes, Kemiha Mohammed, “Thermal Conversion of Biomass, Pyrolysis and
    Gasification: A Review”, The International Journal of Engineering And Science, Vol.
    2, pp. 75-85, 2013.
    [66] Boroson Michael L, Howard J.B, Longwell J.P, Peters W.A, “Product yields and
    kinetics from the vapor phase cracking of wood pyrolysis tars”, AIChE J, Vol. 35, pp.
    120–128, 1989.
    [67] Goyal H.B, Seal Diptendu, Saxena R.C, “Bio-fuels from thermochemical conversion of
    renewable resources: A review”, Renewable and Sustainable Energy Reviews. Vol. 12,
    pp. 504–517, 2008.
    [68] Demiral I, Ayan EA, “Pyrolysis of grape bagasse. Effect of pyrolysis conditions on the
    product yields and characterization of the liquid product”, Bio-resource Technology,
    Vol. 102, pp. 3946–3951, 2011.
    [69] Ortega JV, Renehan AM, Liberatore MW, Herring AM, “Physical and chemical
    characteristics of aging pyrolysis oils produced from hardwood and softwood feed
    stocks”, Journal of Analytical and Applied Pyrolysis. Vol. 91, pp. 190–198, 2011.
    [70] Cao J, Xiao X, Zhang S, Zhao X, Sato K, Ogawa Y, et al, “Preparation and
    characterization of bio-oils from internally circulating fluidized-bed pyrolyses of
    municipal, livestock, and wood waste”, Bioresource Technology, Vol. 102, pp. 2009–
    2015, 2011.
    [71] Gercel HF, “Bio-oil production from Onopordum acanthium L. by slow pyrolysis”,
    Journal of Analytical and Applied Pyrolysis. Vol. 92, pp. 233–238, 2011.
    [72] Onal EP, Uzun BB, Putun AE, “Steam pyrolysis of an industrial waste for bio-oil
    production”, Fuel Processing Technology. Vol. 92, pp. 879–85, 2011. 118

    [73] Amutio M, Lopez G, Artetxe M, Elordi G, Olazar M, Bilbao J, “Influence of
    temperature on biomass pyrolysis in a conical spouted bed reactor”, Resources,
    Conservation and Recycling. Vol. 59, pp. 23–31, 2012.
    [74] Thangalazhy-Gopakumar S, Adhikari S, Ravidran H, Gupta RB, Fasina O, Tu M, et al,
    “Physical properties of bio-oil produced at various temperature from pine wood using
    an auger reactor”, Bioresource Technology. Vol. 101, pp. 8389–8395, 2010.
    [75] Heo HS, Park HJ, Park YK, Ryu C, Suh DJ, Suh YW, et al, “Bio-oil production from
    fast pyrolysis of waste furniture sawdust in a fluidized bed”, Bioresource Technology.
    Vol. 101, pp. 91–96, 2010.
    [76] Islam MR, Parveen M, Haniu H, “Properties of sugarcane waste-derived bio-oils
    obtained by fixed-bed fire-tube heating pyrolysis”, Bioresource Technology, Vol. 101,
    pp. 4162–4168, 2010.
    [77] Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB, “Bio-oil and
    bio-char production from corn cobs and stover by fast pyrolysis”. Biomass and
    Bioenergy, Vol. 34, pp. 67–74, 2010.
    [78] Ertas M, Alma MH, “Pyrolysis of laurel (Laurus nobilis L.) extraction residues in a
    fixed-bed reactor: characterization of bio-oil and bio-char”, Journal of Analytical and
    Applied Pyrolysis, Vol. 88, pp. 22–29, 2010.
    [79] Zhang H, Xiao R, Huang H, Xiao G, “Comparison of non-catalytic and catalytic fast
    pyrolysis of corncob in a fluidized bed reactor”. Bioresource Technology, Vol. 100, pp.
    1428–1434, 2009.
    [80] Asadullah M, Rahman MA, Ali MM, Motin MA, Sultan MB, Alam MR, et al, “Jute
    stick pyrolysis for bio-oil production in fluidized bed reactor”, Bio-resource
    Technology, Vol. 99, pp. 44–50, 2008. 119

    [81] Onay O, Beis SH, Kockar OM, “Fast pyrolysis of rape seed in a well-swept fixed bed
    reactor”, Journal of Analytical and Applied Pyrolysis. Vol. 59, pp. 995–1007, 2001.
    [82] Zanzi R, Sjostrom K, Bjornbom E, “Rapid pyrolysis of agricultural residues at high
    temperature”, Biomass and Bioenergy. Vol. 23, pp. 357–66, 2002.
    [83] Beis SH, Onay O, Kockar OM, “Fixed-bed pyrolysis of safflower seed: influence of
    pyrolysis parameters on product yields and compositions”, Renewable Energy, Vol. 26,
    pp. 21–32, 2002.
    [84] Ates F, Putun E, Putun AE, “Fast pyrolysis of sesame stalk: yields and structural
    analysis of bio-oil”, Journal of Analytical and Applied Pyrolysis, Vol. 71, pp. 779–790,
    2004.
    [85] Uzun BB, Putun AE, Putun E, “Fast pyrolysis of soybean cake: product yields and
    compositions”, Bioresource Technology. Vol. 97, pp. 569–576, 2006.
    [86] Encinar JM, Gonzalez JF, Gonzalez J, “Fixed-bed pyrolysis of Cynara cardunculus L.
    Product yields and compositions”, Fuel Processing Technology, Vol. 68, pp. 209–222,
    2000.
    [87] Fagbemi L, Khezami L, Capart R, “Pyrolysis products from different
    biomasses:application to the thermal cracking of tar”, Applied Energy. Vol. 69, pp. 293–
    306, 2001.
    [88] Di Blasi C, Signorelli G, Di Russo C, Rea G, “Product distribution from pyrolysis of
    wood and agricultural residues”, Industrial & Engineering Chemistry Research.Vol. 38,
    pp. 2216–2224, 1999.
    [89] Della Roca PA, Cerrella EG, Bonelli PR, Cukierman AL, “Pyrolysis of hard- woods
    residues: on kinetics and chars characterization”, Biomass and Bioenergy. Vol. 16, pp.
    79–88, 1999. 120

    [90] S. Ucar, S. Karagoz, A.R. Ozkan, J. Yanik, “Evaluation of two different scrap tires as
    hydrocarbon source by pyrolysis”, Fuel, Vol. 84, pp. 1884–1892, 2005.
    [91] Pichet Ninduangdee, Vladimir I. Kuprianov, “Combustion of palm kernel shell in a
    fluidized bed: Optimization of biomass particle size and operating conditions”, Energy
    Conversion and Management, Article in Press, 2014.
    [92] Khan Zakir, Yusup Suzana, Ahmad Murni Melati, Chin Bridgid Lai Fui, “Hydrogen
    production from palm kernel shell via integrated catalytic adsorption (ICA) steam
    gasification”, Energy Conversion and Management, Article in Press, 2014.
    [93] Khan Zakir, Yusup Suzana, Ahmad Murni Melati, Rashidi Nor Adilla, “Integrated
    catalytic adsorption (ICA) steam gasification system for enhanced hydrogen production
    using palm kernel shell”, International journal of hydrogen energy. Vol. 39, pp. 3286-
    3293, 2014.
    [94] Kim Sung Won, Koo Bon Seok, Ryu Jae Wook, Lee Joon Sik, Kim, Cheol Joong, Lee
    Dong Hyun, Kim Gyung Rok, Choi Sun, “Bio-oil from the pyrolysis of palm and
    Jatropha wastes in a fluidized bed”, Fuel Processing Technology. Vol. 108, pp. 118–
    124, 2013.
    [95] Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R, “Fiber dimensions,
    lignin and cellulose content of various plant materials and their suitability for paper
    production”, Ind Crops Prod, Vol. 19(3), pp. 245-54, 2004.
    [96] Lukáš Gašparovič, Zuzana Koreňová, Ľudovít Jelemenský, “Kinetic study of wood
    chips decomposition by TGA”. 36th
    International Conference of Slovak Society of
    Chemical Engineering, 2009.
    [97] Okoroigwe, E.C, Saffron, C.M, “Determination of Bio-Energy Potential of Palm Kernel
    Shell by Physicochemical Characterization”, Nigerian Journal of Technology. Vol. 31,
    pp. 329-335, 2012. 121

    [98] S. Yaman, “Pyrolysis of biomass to produce fuels and chemical feedstocks”, Energy
    Conversion Management, Vol. 45, pp. 651–671, 2004.
    [99] Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, et al.
    “Target atmospheric CO2: where should humanity aim?”, Open Atmos Sci J, Vol. 2, pp.
    217–231, 2008.
    [100] Laird DA, “The charcoal vision: a win-win-win scenario for simultaneously producing
    bioenergy, permanently sequestering carbon, while improving soil and water quality”,
    Agronomy Journal , Vol. 100, pp. 178–181, 2008.
    [101] Ndoke PN, “Performance of palm kernel shells as a partial replacement for coarse
    aggregate in asphalt concrete”, Leonardo Electr J Prac Technol, Vol. 5. Pp. 145-152,
    2006.
    [102] Alengaram UJ, Mahmud H, Jumaat MZ, “Comparison of mechanical and bond
    properties of oil palm kernel shell concrete with normal weight concrete”, Int J Phy Sci,
    Vol. 5, pp. 1231-1239, 2010.
    [103] Parikh J, Channiwala S.A, Ghosal G.K, “A correlation for calculating HHV from
    proximate analysis of solid fuels”, Fuel, Vol. 84, pp. 487–494, 2005.
    [104] Cordero T, Marquez F, Rodriquez-Mirasol J, Rodriguez JJ, “Predicting heating values
    of lignocellulosic and carbonaceous materials from proximate analysis”, Fuel, Vol. 80,
    pp. 1567–1571, 2001.
    [105] Demirbas A. “Calculation of higher heating values of biomass fuels”, Fuel, Vol. 76,
    pp. 431–434, 1997.
    [106] Jimenez L, Gonzalez F. “Study of the physical and chemical properties of
    lignocellulosic residues with a view to the production of fuels”, Fuel, Vol. 70, pp. 947–
    950, 1991.

    QR CODE
    :::