跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張文龍
Wen-lung Chang
論文名稱: 針對JPEG影像中隙縫修改之偵測技術
Detection of Seam Carving in JPEG Images
指導教授: 施國琛
Timothy K.Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 軟體工程研究所
Graduate Institute of Software Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 75
中文關鍵詞: 影像偽造隙縫刪除隱寫特徵偽造偵測
外文關鍵詞: Image forensics, Seam carving, Steganalysis features, Tamper detection
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於修改影像大小到目標撥放設備的大小來說,以保護內容為基礎的影響重新定位演算法(Content-award image retargeting algorithm)是一種非常有用的技術。而在重新定位演算法中縫隙修改(Seam-carving)是其中一種既容易實作又能夠達到好成果的演算法。在這篇碩士論文中,我們提出了一項技術能夠在沒有原圖參考的情況底下區分出這張JPEG影像是否有經過縫隙修改(Seam-carving)這項科技的偽造。這項技術主要是以方格特徵區域矩陣(blocking effect characteristics matrix)為基礎。從細節上來說,對於原本沒有經過破壞的JPEG影像,方格特徵區域矩陣會呈現出對稱且完整的圖形。反過來說,當這個JPEG影像受到破壞或偽造時,方格特徵區域矩陣的規律將會被破壞。當我們重影像中計算出方格特徵區域矩陣之後,我們再由其中計算出22個特徵向量,並且將這些特徵向量經由支持向量機(Support Vector Machine)來做訓練來求得模組用來辨識經由縫隙修改的影像偽造,實驗數據中顯示我們所提出來的方法利用方格特徵區域矩陣中所擷取出來的特徵向量對於辨識縫隙修改的影像偽造技術的準確性高於現有的方法。


    The Content-award image retargeting algorithm is used for modifying the image size into the suitable size in different device. “Seam carving” is a kind of content aware image retargeting algorithm. In this paper, based on the blocking artifact characteristics matrix (BACM), we propose a method to detect seam carving in natural images without knowledge of the original image. In detail, for the original JPEG images, the BACM exhibits regular symmetrical shapes; for the images that are damaged, the regular symmetrical property of the BACM is destroyed. After found BACM from images, we define 22 features to detect the damage from BACM to train a support vector machine (SVM) classifier for recognizing whether an image is an original or it has been modified by seam-carving. We show that BACM is useful for detecting the damage by seam-carving in JPEG format images.

    Contents 摘要 i Abstract ii Acknowledgements iii Contents iv List of Figures vi List of Tables viii Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Background 2 1.3 Thesis Organization 4 Chapter 2. Related Works 6 2.1 Seam-carving 6 2.2 JPEG image compression 9 2.3 Support vector machine 15 2.4 Image Forgery 19 2.5 The analysis of existing method 27 Chapter 3. Proposed method 30 3.1 The work flow of system 30 3.2 Detection of JPEG blocking effects 33 3.3 Symmetry phenomena in blocking effects 37 3.4 Detect seam carving by feature vector from BCAM 43 Chapter 4. Experimental Results and Discussions 48 4.1 Environment settings 48 4.2 Experimental Results 49 4.3 Compare 54 4.4 Discussion 56 Chapter 5. Conclusions and Future Works 58 5.1 Conclusions 58 5.2 Future Works 58 References 60

    References
    [1] A. Gallagher. “Detection of linear and cubic interpolation in JPEG compressed images. In Computer and Robot Vision”, Proc. The 2nd Canadian Conference on, .pp. 65–72, May (2005).
    [2] A. C. Popescu and H. Farid. “Exposing digital forgeries by detecting traces of re-sampling”. IEEE Transactions on Signal Processing, 53(2): pp.758-767, (2005).
    [3] A. C. Popescu and H. Farid. “Statistical tools for digital forensics”. In Lecture notes in computer science: 7th International Workshop on Information Hiding, pp. 128-147, (2005).
    [4] W. Luo, Z. Qu, J. Huang, and G. Qiu, “A novel method for detecting cropped and recompressed image block,” in Proc. IEEE Conf. Acoustics, Speech and Signal Processing, Honolulu, HI, 2007, pp. 217–220.
    [5] C. Cortes and V. Vapnik. “Support-Vector Networks, Machine Learning”. pp. 273-297, September (1995)
    [6] G. Schaefer and M. Stich. “UCID: an uncompressed color image database”. Proc. SPIE 5307, Storage and Retrieval Methods and Applications for Multimedia. (2004)
    [7] S. Avidan and A. Shamir. “Seam carving for content-aware image resizing”. ACM Trans. Graph., 26(3):10, Vol. 26. (2007).
    [8] G Gordon and R Tibshirani, “Karush-Kuhn-Tucker conditions,” Optimization.
    [9] A. C. Gallagher, “Detection of linear and cubic interpolation in jpeg compressed images,” in Proc. 2nd Canadian Conf. Computer and Robot Vision., Victoria, British Columbia, Canada, vol. 171, pp. 65–72, (2005).
    [10] M. Kirchner, “Fast and reliable resampling detection by spectral analysis of fixed linear predictor residue,” in ACM Multimedia and Security Workshop, pp. 11–20, (2008).
    [11] H. Farid. “Image Forgery Detection”. IEEE Signal Processing Magazine, (2009) Vol. 26 pp. 16-25.
    [12] J. Fridrich, D. Soukal, and J. Lukás, “Detection of copy move forgery in digital images,” in Proc. Digital Forensic Research Workshop, Aug. (2003).
    [13] A. C. Popescu and H. Farid, “Exposing digital forgeries by detecting duplicated image regions,” Dept. Comput. Sci., Dartmouth College, Tech. Rep. TR2004-515, (2004).
    [14] A. Sarkar, L. Nataraj, and B. S. Manjunath. “Detection of Seam Carving and Localization of Seam Insertions in Digital Images”, Proceeding MM&Sec '09 Proceedings of the 11th ACM workshop on Multimedia and security pp. 107-116, (2009).
    [15] Y. Q. Shi, C. Chen, and W. Chen. “A Markov process based approach to effective attacking JPEG steganography”. In Lecture notes in computer science: 8th International Workshop on Information Hiding, pp. 249-264, July (2006).
    [16] Z. Fan and R. L. de Queiroz. “Identification of Bitmap Compression History: JPEG Detection and Quantizer Estimation”, IEEE Transactions on image processing, Vol. 12, No. 2, pp. 230-235 (2003).
    [17] M. Rubinstein, A. Shamir, and S. Avidan. “Improved seam carving for video retargeting,” ACM Transactions on Graphics, Vol. 27, Issue 3 No. 16, Aug. (2008).
    [18] G. K. Wallace. “The JPEG still picture compression standard”, Communications of the ACM - Special issue on digital multimedia systems, Vol. 34, Issue 4, pp. 30-44, Apr. (1991).
    [19] J. Fridrich, D. Soukal, and J. Lukás. “Detection of copy move forgery in digital images”, Proc. Digital Forensic Research Workshop, Aug. 2003.
    [20] T. K. Moon. “The expectation-maximization algorithm”, Signal Processing magazine, IEEE, Vol. 13, Issue 6, pp. 47-60, (1996).
    [21] Weiqi Luo, Zhenhua Qu, Jiwu Huang, Guoping Qiu, “A novel method for detecting cropped and recompressed image blocks”, IEEE Acoustics, Speech and Signal Processing, Vol. 2, pp. 217-220 (2007).
    [22] M. K. Johnson and H. Farid. “Exposing digital forgeries through chromatic aberration”, in Proc. ACM Multimedia and Security Workshop, Geneva, Switzerland, pp. 48–55, (2006).
    [23] H. Farid and S. Lyu. “Higher-order wavelet statistics and their application to digital forensics,” in Proc. IEEE Workshop on Statistical Analysis in Computer Vision (in conjunction with CVPR), Madison, WI, pp. 94 (2003).

    QR CODE
    :::