跳到主要內容

簡易檢索 / 詳目顯示

研究生: 古亦娜
Vina Agustina Gultom
論文名稱: 增強鎳(Ni)參雜錫(Sn)奈米粒子的超導性
Enhanced superconductivity in Ni-doped Sn nanoparticles
指導教授: 李文献
Wen Hsien Li
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 87
中文關鍵詞: SnO2,納米粒子,X 射線衍射,超導性。
外文關鍵詞: SnO2, nanoparticles, x-ray diffraction, superconductivity.
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了Sn 和Ni 納米顆粒(NPs)複合體系的超導(SC)現象。 我們分
    析了Sn 摻雜Ni 的合成壓力對四方相形成的影響。 通過熱蒸發方法製造Sn 和Ni 納米
    顆粒,使用兩個分離的蒸發源進行單獨蒸發; 並且藉由各種惰性氣體的壓力的控制顆粒
    的尺寸。 對於Sn 側,加熱電流為~50A,對於Ni 側,加熱電流為~80A,相應的氬氣壓
    力為0.18 托和0.08 托。 使用X 射線繞射法進行晶體結構的表徵分析,然後與Rietveld
    精製結合以確定樣品組成和微晶尺寸。 對於第1,第2 和第3 樣品的微晶尺寸分別達到
    34.6(9)nm,33.8(9)nm 和30.1(2)。
    在1.8K 和未施加磁場下測量這些樣品的AC 磁化率,從而出現超導狀態。使用
    Scalapino 配件測試每個樣品。 Scalapino 擬合是通過關聯磁化率和溫度來確定超導參數
    的良好描述。此外,當施加磁場Ha = 0 Oe 時,隨著樣品的粒徑減小,電子間隙δ 也變
    大,穿透深度變大,0.192(8)nm,δ= 0.00206(4)kBTC,0.26 (1)nm 與δ= 0.01
    (7)kBTC,1.1(2)nm,δ= 0.08(4)kBTC,表明施加的磁場將完全穿透納米粒子,
    並導致抗磁效應被完全破壞。當樣品的微晶尺寸變小時,臨界磁場增加,這意味著抗
    磁效率越來越好。令人驚訝的是,30.1(2)nm 的臨界溫度比塊體的臨界溫度高108 倍
    (可接受的錫邊界溫度實驗值為3.722K)。此特殊樣品具有SnO2 結構,因此提升了臨
    界溫度。


    Herein, this study reports the superconductivity (SC) phenomena of Sn and Ni
    nanoparticles (NPs) composite systems. We analyzed the influence of the synthesis pressure
    of Sn-doped Ni in the formation of the tetragonal phase. Sn and Ni nanoparticles have been
    fabricated by the thermal evaporation method with two decoupled evaporation sources for
    separate evaporation; and the size of particles with various inert gas pressures was controlled.
    The heating current is ~50 A for Sn side and ~80 A for Ni side with the respective argon
    pressure of 0.18 torr and 0.08 torr. The characterization of crystal structure was performed using
    experimental techniques such as X-ray diffraction method, then allied with Rietveld refinement
    to determine the sample composition and crystallite size. The crystallite size of these samples
    were achieved 34.6(9) nm, 33.8(9) nm and 30.1(2), respectively for the sample 1, sample 2 and
    sample 3.
    The AC susceptibility of these samples was measured at 1.8 K and zero applied
    magnetic field, thus the superconducting state appeared. Each sample was tested using the
    Scalapino fitting. Scalapino fitting is a good description to determine the superconducting
    parameters by relating the magnetic susceptibility and temperature. In addition, when applied
    magnetic field Ha = 0 Oe, the penetration depth becomes larger as the particle size of the sample
    decreases and the electron gap δ become larger as well, 0.192(8) nm with δ = 0.00206(4) kBTC,
    0.26(1) nm with δ = 0.01(7) kBTC, 1.1(2) nm with δ = 0.08(4) kBTC, respectively, indicating
    that the applied magnetic field will completely penetrate the nanoparticles, and causing the
    diamagnetic effect to be completely destroyed. Surprisingly, the critical temperature of 30.1(2)
    nm is achieve higher 108 times than that of the bulk (the accepted experimental value of the tin
    boundary temperature is 3.722K) kOe. This interesting sample has SnO2 structure and it made
    an enhancement on the critical temperature.

    摘要 ....................................................................................................................................... i ABSTRACT ......................................................................................................................... ii ACKNOWLEDGEMENTS ................................................................................................ iii TABLE OF CONTENTS ..................................................................................................... v LIST OF FIGURES ............................................................................................................ vi LIST OF TABLES .............................................................................................................. ix EXPLANATION OF SYMBOLS ........................................................................................ x INTRODUCTION ......................................................................................... 1 1.1 Purpose of Experiment ....................................................................................... 1 1.2 Basic Physical Properties.................................................................................... 3 1.2.1 Physical Properties of Tin ......................................................................... 3 1.2.2 Physical Properties of Nickel .................................................................... 6 1.3 Physical Properties of Nanoparticles ................................................................. 7 1.4 Basic Introduction of Superconductivity ......................................................... 13 1.4.1 Superconductivity and Ferromagnetism ................................................ 15 1.4.2 Scalapino Theory for Superconductivity ................................................ 19 References ............................................................................................................... 28 EXPERIMENTAL METHODS .................................................................. 31 2.1 Samples Preparation ........................................................................................ 31 2.2 X-ray Diffraction (XRD) .................................................................................. 35 2.3 Physical Property Measurement System (PPMS) ........................................... 37 References ............................................................................................................... 40 CRYSTALLINE STRUCTURE ANALYSIS ............................................. 41 3.1 Rietveld Refinements ........................................................................................ 41 3.2 Crystallite Sizes ................................................................................................. 49 References ............................................................................................................... 57 SUPERCONDUCTIVITY ANALYSIS OF TIN NICKEL ALLOY ......... 58 4.1 Effect of Applied Magnetic Field on Magnetic Susceptibility ......................... 58 4.2 Effect of Applied Magnetic Field on Critical Temperature ............................ 61 4.3 Effect of Applied Magnetic Field on Penetration Depth ................................. 67 References ............................................................................................................... 69 CONCLUSIONS AND FURTHER WORKS ............................................. 70 5.1 Conclusions ....................................................................................................... 70 5.2 Further Works .................................................................................................. 71 APPENDIXES .................................................................................................................... 72

    P. W. Bridgman, Proc. Am. Acad. Arts Sci. 74, 425 (1942).
    W. Paul, J. Appl. Phys. 32, 2082 (1961).
    J. D. Barnett, V. E. Bean, and H. T. Hall, J. Appl. Phys. 37, 4S. J. 875 (1966).
    N. Vaiyda and G. C. Kennedy, J. Phys. Chem. Solids 31, 2329 {1970).
    J. Staun Olsen, B. Buras, L. Gerward, and S. Steenstrup, J. Phys. E 14, 1154 (1981)
    H. Olijnyk and W. B. Holzapfel, J. Physique (Paris) Colloq. 45, Suppl. 11, C8-153 (1984).
    M. E. Cavaleri, T. G. Plymate, and J. H. Stout, J. Phys. Chem. Solids 49, 945 {1988).
    H. Olijnyk, Phys. Rev. B 46, 6589 (1992).
    M. A. E. A. Ament and A. R. de Vroomen, J. Phys. F 4, 1359 (1974).
    J. Ihm and M. L. Cohen, Phys. Rev. B 23, 1576 (1981).
    A. Svane and E. Antoncik, Solid State Commun. 58, 541 (1986).
    A. Svane and E. Antoncik, Phys. Rev. B 35, 4611 (1987).
    J. L. Corkill, A. Garcia, and M. L. Cohen, Phys. Rev. B 43, 9251 (1991)
    B. Cheong and K. J. Chang, Phys. Rev. B 44, 4103 (1991).
    H. G. Salunke, G. P. Das, and N. E. Christensen, in Proceedings of the XIII AIRAPT
    Conference, Bangalore, India, Oct 1991(Oxford & IBH, New Delhi, in press).
    Xavier Blase, Etienne Bustarret, Claude Chapelier, Thierry Klein, Christophe Marcenat.
    Superconducting group-IV semiconductors. Nature Materials, Nature Publishing Group,
    2009, 8, pp.375-382. <10.1038/NMAT2425>. <hal-00761020>
    G. A. Busch and R. Kern, in Solid State Physics, edited by F. Seitz and D. Turnbull
    ~Academic, New York, 1960!, Vol. 11, p. 1.
    David L. Heiserman, Exploring Chemical Elements and their Compounds. New
    York: TAB Books, 1992.
    P.J. Smith, Chemistry of Tin, Blackie Academic & Professional, London, 1998.
    David R. Lide, Handbook of Chemical and Physics, CRC, 76th, 1995-1996
    Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996.
    271(5251): p. 933.
    Michalet, X., F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan,
    A.M. Wu, S.S. Gambhir and S. Weiss, Quantum dots for live cells, in vivo imaging, and
    diagnostics. Science, 2005. 307(5709): p. 538-544.
    Dubertret, B., P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou and A. Libchaber,
    in vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002.
    298(5599): p. 1759-1762.
    Aspnes, D.E., Optical properties of thin films Thin Solid Films, 1982. 89(3): p. 249-262.
    Francois, J.C., Y. Massiani, P. Gravier, J. Grimblot and L. Gengembre, Characterization
    and optical properties of thin films formed on TiN coating during electrochemical
    treatments Thin Solid Films, 1993. 223(2): p. 223-229.
    Stratmann, M., R. Feser and A. Leng, Corrosion protection by organic films
    Electrochimica Acta, 1994. 39(8-9): p. 1207-1214. 140
    Gray, J.E. and B. Luan, Protective coatings on magnesium and its alloys – a critical
    review. Journal of Alloys and Compounds, 2002. 336(1-2): p. 88-113.
    Dimitrakopoulos, C.D. and P.R.L. Malenfant, Organic thin film transistors for large area
    electronics. Advanced Materials, 2002. 14(2): p. 99-+.
    Scherf, U. and E.J.W. List, Semiconducting polyfluorenes - Towards reliable structureproperty
    relationships. Advanced Materials, 2002. 14(7): p. 477-+.
    Wolf, S.A., D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L.
    Roukes, A.Y. Chtchelkanova and D.M. Treger, Spintronics: A spinbased electronics
    vision for the future. Science, 2001. 294(5546): p. 14881495.
    Scientific Committee on Emerging and Newly Identified Health Risks, Scientific basis for
    the definition of the term “nanomaterials,” European Union 2010
    Pub. No. 2011-140598, Method of Manufacturing of Nanoparticle Dispersion and
    Dispersion of Ink-jet printing
    Chao-Ming Lai et all, December 2003, Department of Chemistry and Biochemistry,
    National Chung Cheng University, Taiwan, CHEMISTRY (THE CHINESE CHEM.
    SOC., TAIPEI), Vol. 61, No. 4, pp.585~597, Novel Effects and Applications of
    Nanometer Materials
    S. Iijima (1985). "Electron Microscopy of Small Particles". Journal of Electron
    Microscopy. 34 (4): 249.
    Zhang Yuheng, Li Yuzhi, superconducting physics.
    R. Kubo, Journal of the Physical Society of Japan 17,975(1962)
    P. W. Anderson Phys. Rev. Lett. 71,8(1993)
    Zhang Lide, Qi Jimei, Nanomaterials and Nanostructures, Science Press, 2001.
    J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res., 32, 435, 1999.
    F. London, H. London, Physica 2, 34 (1935); Proc. Roy. Soc. (London) A 149, 71 (1935).
    J. Bardeen, L. N. Cooper, J. R. Shrieffer, Phys. Rev. 108, 5 (1957)
    F.London,Superfluids (Dover,New York,1961),Vol.1,P.41
    F.London and H.London,Proc.Roy.Soc.,(London) A155,(1935), 71
    B. Mühlschlegel, D. J. Scalapino, and R. Denton, Phys. Rev. B 6, 5 (1972)
    Kazuo Kimoto, Yoshihiro Kamiya, Minoru Nonoyama, and Ryozi Uyeda, Japan. J. Appl.
    Phys., 2, 11, 702, 1963.
    Nobuhiko, Japan. J. Appl. Phys., 6, 5, 553, 1967.
    Su Pinshu, Ultrafine Particle Materials Technology, Fu Han Press, 1989.
    Robinson, J.W., Frame, E.M.S., Frame, G.M., 2005, Undergraduate Instrumental
    Analysis Sixth Edition, Marcell Dekker, New York, 535.
    Clearfield, A., 2008, Chapter 2 : Introduction to Diffraction, in Clearfield, A., Reibenspies,
    J.H., Bhuvanesh, N., Principles and Applications of Powder Diffraction, John Wiley &
    Sons, Ltd., Oxford, UK.
    PPMS Hardware & Options Manual (Quantum Design 1999).
    A. C. Larson and R. B. Von Dreele, Los Alamos Natl. Lab. Rep., 2004, pp. 86–748.
    B. H. Toby, J. Appl. Crystallogr., 2001, 34, 210–213.
    R. Young and P. Desai, Arch. Nauki Mater., 1989, 10, 71–90.
    L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Lou¨er and P. Scardi, J. Appl.
    Crystallogr., 1999, 32, 36–50.
    Kaduk, J. A., 2008, Chapter 8: Structure Refinement, in Clearfield, A., Reibenspies, J.H.,
    Bhuvanesh, N., Principles and Applications of Powder Diffraction, John Wiley & Sons,
    Ltd., Oxford, UK.
    Synthesis of nanostructured SnO and SnO2 by high-energy milling of Sn powder with
    stearic acid, 2013, Journal of Materials Research, Lizandro Manzato
    Ateeq Ahmed, 2018, Enhanced room temperature ferromagnetism in Ni doped SnO2
    nanoparticles: A comprehensive study
    2010, Sn/SnOx Core-Shell Nanospheres: Synthesis, Anode Performance in Li Ion
    Batteries, and Superconductivity, Xiao-Liang Wang, American Chemical Society
    Dramatic increase of the onset critical temperature and critical field of elemental Sn in the
    form of thin nanowires, Ying Zhang, arxiv
    Payzant, E. A., 2008, Chapter 9: Other Topics, in Clearfield, A., Reibenspies, J.H.,
    Bhuvanesh, N., Principles and Applications of Powder Diffraction, John Wiley & Sons,
    Ltd., Oxford, UK.
    Hammond, C., 2001, The Basics of Crystallography and Diffraction, 2nd Edition,
    International Union of Crystallography, Oxford University Press, Oxford, UK. Caglioti
    Coelho, A.A., 2016, TOPAS-Academic, Ver. 6: Technical Reference, Bruker-AXS.
    Hunter, B.A., Howard, C.J., 1998, A Computer Program for Rietveld Analysis of X-Ray
    and Neutron Powder Diffraction Patterns, Lucas Heights Research Laboratories,
    Australian Nuclear Science and Technology Organization, Australia
    N. Ahmad and S. Khan, J. Alloys Compd. 720, 502 (2017).
    B. Mṻhlschlegel, D. Scalapino, and R. Denton, Phys. Rev. B 6, 1767 (1972)
    Mott, N.F. Metal-insulator transitions. Taylor & Francis Ltd, London, 1974
    Persson, C. & Ferreira da Silva, A. Electronic Properties of Intrinsic and Heavily Doped
    3C-, nH-SiC (n=2,4,6) and II-N (III = B,Al,Ga,In) in : Optoelectronic Devices : IIINitrides,
    Edited by M. Razeghi and M. Henini, Elsevier Advanced Technology, London ,
    2004.
    https://en.m.wikipedia.org/wiki/Fermi_level, November 08th 2018

    QR CODE
    :::