| 研究生: |
張廷嘉 TING-CHIA CHANG |
|---|---|
| 論文名稱: |
非揮發性溶質於乾燥後所形成的類環狀等圖樣殘留之探討 Ring-Like Stain Formed by Nonvolatile Solutes |
| 指導教授: |
曹恒光
Heng-Kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 遲滯 、接觸角 、塗佈 、界面科學 、潤濕現象 、乾燥 、咖啡圈 、沉降 |
| 外文關鍵詞: | coffee ring, coffee ring effect, contact angle hysteresis, evaporation, deposit, contact angle, dry, wetting |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往的文獻對於溶液滴在固體材質表面上所進行的乾燥研究,大多
是在親水材質上用粒子溶液來探討,因此一般對乾燥圖形的認知,是
會形成"Ring-like"-因 Coffee ring effect 所造成外深內淺的環狀
殘留圖形。
因此我們選用了其它種類型的溶液,如高分子和小分子鹽類等尺寸
遠小於粒子的溶質,並搭配親疏水性不同的材質表面來進行有別於以
往文獻的乾燥實驗探討。
經我們實驗後發現乾燥後生成的圖樣主要取決於兩個因素:
Contact angle hysteresis 和 Adhesion-當材質的接觸角遲滯足以
讓液珠在材質上 Pinning 至溶液邊緣的濃度達析出或結晶濃度,便可
在乾燥的最後看到環狀殘留圖樣;反之,要是材質的接觸角遲滯無法
讓液珠 Pinning 蒸發至足夠濃度,便會看到液珠往內縮,使得在最後
無法形成環狀的乾燥殘留。而溶質與材質間的黏附若是夠強,便可發
現溶質佈滿在與原始液珠覆蓋範圍相同面積大小的材質表面,反之則
可看到溶質只殘留在明顯小於原始液珠大小的局部表面。
而溶質尺寸較大的粒子型溶液與高分子和小分子鹽類溶液相比,因
粒子溶液可藉沉降作用而較容易附著在材質表面,因此想要形成
Ring-like 圖樣需要的材質遲滯較小;尺寸較小的高分子或小分子鹽類是靠濃度達飽和來進行析出或結晶,因此需要的材質遲滯較大;然
而,若在溶液中加入了 Surfactant 以增強溶液和材質表面的黏附效
果,並大幅的降低表面能使液珠後退角改變至近乎零度,如此一來即
便是小分子鹽類也可很容易的形成 Ring-like 乾燥圖樣。
因此,是否會生成環狀的乾燥殘留主要取決於接觸角遲滯,而黏附
的強弱則可決定溶質在材質上的殘留範圍。並可把乾燥圖型的生成看
作是溶劑蒸發內縮的速度與溶質的沉降、析出或結晶間的相互競爭。
依循此原則,只要遲滯夠大即使在疏水表面上或者是小分子鹽類溶液
也可形成環狀的乾燥圖樣;反之要是遲滯太小即使是親水材質也無法
看到環狀的蒸發殘留。
When a drop of liquid dries on a substrate, its nonvolatile solute is deposited in ring-like fashion and this phenomenon is known as coffee-ring effect. During the drying process, drop edges become pinned to the substrate. Meanwhile capillary flow is induced by differential evaporation rates across the droplet surface outward from the center of the drop. The outflow brings suspended particles to the edge as evaporation proceeds. In general, there are three necessary conditions to form coffee ring including nonzero contact angle, contact line is pinned to its initial position as solvent evaporates. However, the mechanism of drying process on different substrates is seldom mentioned. In our study, the drying process and drying patterns are observed on the various substrates with different contact angle hysteresis such as glass, polypropylene, polycarbonate, graphite and PMMA. In addition, different solutes in solution are also discussed.
From the observation of our experiments, we generalize some conclusions in the following:
(1) The type of drying pattern depends on the contact angle hysteresis of substrates and adhesion.
(2) There are two determined factors for forming a ring like stain: one is time needed for reaching the concentration of phase separation and the other is reduction of contact line.
(3) The existence of outflow is not responsible for the contact line pinning.
[1] R. D. Deegan,O. Bakajin, T. F. Dupont, et al.,“ Capillary flows the cause of ring stains from dried liquid drops”, Nature, 389, 827-829 (1997)
[2] Robert D. Deegan, O. Bakajin, T.F. Dupont, et al., “ Contact line deposits in an evaporating drop”, Physical Review E, 62, 756-765(2000)
[3] R. Bhardwaj, X. Fang,Daniel, et al., “AttingerPattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study”, New Journal of Physics,11,33(2009)
[4] X. Xu, J. Luo,D. Guo,“ Radial-velocity profile along the surface of evaporating liquid droplets” Soft Matter, 8, 5797-5803(2012)
[5] L. Xu,S. Davies,A. B. Schofield, et al., “ Dynamics of Drying in 3D Porous Media” PRL, 101, 094502 (2008)
[6] A.S. Sangani, C. Lu, K. Su, J. A. Schwarz,“ Capillary force on particles near a drop edge resting on a substrate and a criterion for contact line pinning”, Physical Review E, 80, 011603 (2009)
[7] P. A. Kralchevsky, N.D. Denkov,“ Capillary forces and structuring in layers of colloid particles”,Current Opinion in Colloid & Interface Science, 6,383-401(2001)
[8] R. D. Leonardo,F. Saglimbeni,G. Ruocco,“Very-Long-Range Nature of Capillary Interactions in Liquid Films”, Physical Review L,100, 106103 (2008)
[9] X. Shen, C.M. Ho, T.S. Wong,“Minimal Size of Coffee Ring Structure”, J. Phys. Chem. B, 114, 5269–5274(2010)
[10] H. M. Gorr, J. M. Zueger, J. A. Barnard,“ Lysozyme Pattern Formation in Evaporating Drops”, Langmuir, 28 (9), 4039–4042(2012)
[11] J. Park,J. Moon,“Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing”, Langmuir, 22, 3506 – 3513(2006)
[12] R. Bhardwaj,X. Fang,P. Somasundaran, et al., “ Self-Assembly of Colloidal Particles from Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram”, Langmuir, 26 (11), 7833–7842(2010)
[13] I. I. Smalyukh,O. V. Zribi,J. C. Butler, et al., “ Structure and Dynamics of Liquid Crystalline Pattern Formation in Drying Droplets of DNA”, Physical Review L, 96, 177801 (2006)
[14] L. Zhang, S. Maheshwari, H. C. Chang, Y.Zhu,“Evaporative Self-Assembly from Complex DNA - Colloid Suspensions”, Langmuir, 24, 3911 – 3917(2008)
[15] S. Maheshwari, L. Zhang, Y. Zhu, H.C. Chang,“ Coupling Between Precipitation and Contact-Line Dynamics:
Multiring Stains and Stick-Slip Motion”, Physical Review L, 100, 044503 (2008)
[16] N. N. Jason, R. G. Chaudhuri,S. Paria,“ Self-assembly of colloidal sulfur particles influenced by sodium oxalate salt on glass surface from evaporating drops”, Soft Matter,8, 3771-3780(2012)
[17] S. Choi,S. Stassi,A. P. Pisano,T. I. Zohdi,“ Coffee-Ring Effect-Based Three Dimensional Patterning of Micro/Nanoparticle Assembly with a Single Droplet”, Langmuir, 26 (14), 11690–11698(2010)
[18] M. C. Lensen,K. Takazawa,J. A. A. W. Elemans,C. R. L. P. N. Jeukens,P. C. M. Christianen, et al., “ Aided Self-Assembly of Porphyrin Nanoaggregates into Ring-Shaped Architectures”, Chem. Eur. J., 10, 831-839(2004)
[19] K. J. Stebe,“Assembly of Colloidal Particles by Evaporation on Surfaces with Patterned Hydrophobicity”, Langmuir, 20, 3062-3067(2004)
[20] H.Y. Ko, J. Park, H. Shin, J. Moon ,“Rapid Self-Assembly of Monodisperse Colloidal Spheres in an Ink-Jet Printed
Droplet”, Chem. Mater., 16, 4212 – 4215(2004)
[21] J. Xu,J. Xia,S. W. Hong,Z. Lin,Feng Qiu, et al., “Self-Assembly of Gradient Concentric Rings via Solvent Evaporation from a Capillary Bridge”, Physical Review L,96, 066104 (2006)
[22] A. Denneulin,J. Bras,F.Carcone, et al.,,“ Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films”, Carbon,49(8), 2603–2614(2011)
[23] M. Layani, M. Gruchko, O. Milo, et al., “ Transparent Conductive Coatings by Printing Coffee Ring Arrays Obtained at Room Temperature”, ACS Nano, 3 (11),3537–3542(2009)
[24] F. C. Krebs,“ Fabrication and processing of polymer solar cells: A review of printing and coating techniques”, Solar Energy Materials & Solar Cells,93,394–412(2009)
[25] Y.T. Gizachew, L. Escoubas, J.J. Simon, M. Pasquinelli, et al., “Towards ink-jet printed fine line front side metallization of crystalline silicon solar cells”, Solar Energy Materials & Solar Cells,95, S70–S82(2011)
[26] F.C. Chen, J.P.Lu, W.K.Huang.,“ Using Ink-Jet Printing and Coffee Ring Effect to Fabricate Refractive Microlens Arrays”, IEEE, 21, 648-650(2009)
[27] D. Zhang, Y. Xie, M. F. Mrozek, et al., “ Raman Detection of Proteomic Analytes”, Anal. Chem,75, 5703 – 5709(2003)
[28] J. Filik, N.s Stone,“ Drop coating deposition Raman spectroscopy of protein mixtures”, Analyst, 132, 544–550(2007)
[29] D.Soltman,V.Subramanian,“ Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect”, Langmuir, 24, 2224 – 2231(2008)
[30] C.T.Chen, F.G. Tseng, C.C. Chieng,“ Evaporation evolution of volatile liquid droplets in nanoliter wells”, Sensors and Actuators A,130,12–19 (2006)
[31] W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, H. A. Stone,“Influence of Substrate Conductivity on Circulation Reversal in Evaporating Drops”, Physical Review L, 99, 234502 (2007)
[32] H. Hu, R. G. Larson,“ Marangoni Effect Reverses Coffee-Ring Depositions”, J. Phys. Chem. B, 110 (14), 7090-70949(2006)
[33] T. Still, P. J. Yunker, A. G. Yodh,“ Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops”, Langmuir, 28 (11), 4984–4988(2012)
[34] B. M. Weon, J.H. Je,“Capillary force repels coffee-ring effect”, Physical review E, 82, 015305(2010)
[35] P. J. Yunker, T.Still, M. A. Lohr,A. G. Yodh,“Suppression of the coffee-ring effect by shape-dependent capillary interactions”, Nature,476,308-311(2011)
[36] H. B. Eral,D. M. Augustine,M. H. G. Duits,F. Mugele,“Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting”, Soft Matter, 7, 4954(2011)
[37] G.Huber.“Rush hour in a drop of coffee”, Physics,4, 65(2011)
[38] Wikipedia,Adhesion,取自: http://en.wikipedia.org/wiki/Adhesion
[39] Kevin Kendall,“Adhesion: Molecules and Mechanics”, Science,263,1720-1725(1994)
[40] Wikipedia, Young-dupre equation,取自: http://en.wikipedia.org/wiki/Young-Dupre
[41] U.Opik,“ Contact-Angle Hysteresis Caused by a Random Distribution of Weak Heterogeneities on a Solid Surface”, Journal of Colloid and Interface Science, 223, 143–166 (2000)
[42] S.J. Hong, F.M. Chang, T.H. Chou, et al., “Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning”, Langmuir,27(11),6890–6896(2011)