| 研究生: |
簡瑋延 Wei-Yen Chien |
|---|---|
| 論文名稱: |
應用物件導向分類方法自動產製斜坡單元 Automated Generation of Slope-Unit using an Object-Oriented Classification Method |
| 指導教授: |
李錫堤
Chyi-tyi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 物件導向 、影像分割 、斜坡單元 |
| 外文關鍵詞: | Object-Oriented, Segmentation, Slope unit |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於氣候變遷及極端降雨之影響,近年台灣坡地災害頻繁。為了山崩災害之相關研究及地質災害敏感區劃設之需求,須使用合適之斜坡單元,建立各類型山崩潛勢評估系統。本研究先擇定大漢溪流域內之一小集水區做為訓練區域,以物件導向式分析方法自動化產製斜坡單元。利用數值地形模型計算研究區域內之坡度、坡向、曲率、水系、集水區等網格資料圖層,匯入物件導向分析軟體 Definiens中,給定各資料圖層權重後,根據影像資料之光譜均調性及空間相關性進行影像分割,產製合適之斜坡單元。隨後以此影像分類準則應用於大漢溪流域其他小集水區進行檢核,檢討其成效後,建立合適之影像分類通則,並進行各斜坡單元內坡向標準差之統計,以做為評定成果優劣之用。與使用其他因子之分割程序相比較後,最後使用坡向圖層輔以集水區及水系圖層進行影像分割,使其滿足各斜坡單元之內部差異須最小且單元間差異須最大之基本定義。分析結果顯示,一級河之集水區大多可區分為二至三個或更多個斜坡單元,與前人研究結果相比,能獲得更細緻而合理之劃分結果。
Slope disasters have received attention in recent year worldwide and in Taiwan, because of extremely heavy rainfall presumed to relate to climate change. For the purpose of landslide research and geological sensitive zone designation, we require division of appropriate slope units for building up various types of landslide potential evaluation system. In this study, one of a small catchment in the Tahan river watershed was chosen as the training area, using an object-oriented classification method to automatically generate slope-units. I used DTM (Digital Terrain Model) as raw data to produce raster data layers which include slope gradient, slope aspect, curvature, drainage system, catchment area. These raster data were imported into an object-oriented analysis software, which was known as Definiens, weight of each data layer was given, and then segmentation as well as slope-unit generation was executed, according to the heterogeneity and spatial correlation of the imported data. After that we applied this rule in other catchments of the Tahan river watershed and viewed its effectiveness to make further amendments for a reasonable general rule. A standard deviation of slope aspects in each slope-unit was calculated for checking purpose. Finally, we used the slope aspect and the catchment area, as well as drainage system for segmentation through comparison of the results from different layer weightings. The final result of using this segmentation criteria satisfied the definition of slope-unit that high homogeneity within each unit and high heterogeneity between the neighbor units. It shows that each of a small catchment of a first-order stream could be divided into two or three or even more parts of slope units. This provides more detailed and reasonable result than previous studies.
王鑫(1988) 地形學,聯經出版事業公司,共356頁。
宋芝萱 (2007) 順向坡的地形分析及自動萃取,國立中央大學地球科學系學士論文,共21頁。
宋秉憲 (2005) 以數值高程模型辨識地形之研究,國立政治大學資訊科學學系碩士論文,共59頁。
林文賜、朱豐沂 (2009) 集水區自動劃分理論之評估與應用,水保技術,第四卷,第二期,第74-80頁。
林淑媛 (2003) 地形地質均質區劃分與山崩因子探討,國立中央大學應用地質研究所碩士論文,共140頁。
紀宗吉、林錫宏、蘇品如、張閔翔、周稟珊 (2007) 山崩敏感區評估之製圖地形單元製作研究。經濟部報告書編號:95008,共39頁。
莊雲翰 (2002) 結合影像區塊及知識庫分類之研究--以IKONOS 衛星影像為例,國立中央大學土木工程研究所碩士論文,共94頁。
黃韋凱 (2010) 物件導向分析方法應用於遙測影像之分區及崩塌地與人工設施分類,國立台灣大學應用土木工程學研究所碩士論文,共109頁。
楊奕岑、徐美玲、賴進貴 (2005) DEM 解析度暨流向演算法對於集流面積計算之影響,地理學報,第39期,第 71-90頁。
劉守恆 (2003) 衛星影像於崩塌地自動分類組合之研究,國立成功大學地球科學系碩士論文,共83頁。
鄭雅文、史天元、蕭國鑫(2003) 物件導向分類於高解析度影像自動判釋,航測及遙測學刊,第十三卷,第四期,第273-284 頁。
經濟部中央地質調查所 (2007) 地質敏感區災害潛勢評估與監測─都會區周緣坡地山崩潛勢評估(1/4),經濟部中央地質調查所,共56頁。
Alcantara-Ayala, I. (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47, 2-4, 107-124.
Aleotti, P., Chowdhury, R. (1999) Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58, 1, 21-44.
Alexander, D. (1991) Applied geomorphology and the impact of natural hazards on the built environment. Natural Hazards, 4, 1, 57-80.
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., Reichenbach, P. (2002) Impact of mapping errors on the reliability of landslide hazard maps. Natural Hazards and Earth System Science , 2, 3-14.
Barlow, J., Franklin, S., Martin, Y. (2006) High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes. Photogrammetric Engineering and Remote Sensing, 72, 6, 687-692.
Barlow, J., Martin, Y., Franklin, S. (2003) Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia. Canadian Journal of Remote Sensing, 29, 510-517.
Bue, B., Stepinski, T. (2006) Automated classification of landforms on Mars. Computers Geosciences, 32, 5, 604-614.
Burnett, C., Blaschke, T. (2003) A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecological Modelling, 168, 3, 233-249.
Burrough, P. A., van Gaans, P. F. M., MacMillan, R. (2000) High-resolution landform classification using fuzzy k-means. Fuzzy Sets and Systems, 113, 1, 37-52.
Carrara, A. (1983) Multivariate models for landslide hazard evaluation. Mathematical Geology, 15, 3, 403-426.
Carrara, A. (1988) Drainage and divide networks derived from high-fidelity digital terrain models. NATO ASI series. Series C, Mathematical and Physical Sciences, 223, 581-597.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P. (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16, 5, 427-445.
Carrara, A., Cardinali, M., Guzzetti, F., Reichenbach, P. (1995) GIS technology in mapping landslide hazard. Geographical Information Systems In Assessing Natural Hazards. Kluwer Academic Publisher, Dordrecht, 135-176.
Carrara, A., Crosta, G., Frattini, P. (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surface Processes and Landforms, 28, 10, 1125-1142.
Claessens, L., Heuvelink, G., Schoorl, J., Veldkamp, A. (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surface Processes and Landforms, 30, 4, 461-477.
Cooke, R. U., Doornkamp, J. C. (1994) Geomorphology in environmental management, Clarendon press, Oxford, 410p
Definiens Imaging (2004) eCognition user guide 4, Germany, 486p.
Dikau, R. (1989) The application of a digital relief model to landform analysis in geomorphology, Philadelphia, Taylor & Francis, 219p
Drăguţ, L., Blaschke, T. (2006) Automated classification of landform elements using object-based image analysis. Geomorphology, 81, 3-4, 330-344.
Dymond, J., Derose, R., Harmsworth, G. (1995) Automated mapping of land components from digital elevation data. Earth Surface Processes and Landforms, 20, 2, 131-137.
Dymond, J. R., Harmsworth, G. R. (1994) Towards automated land resource mapping using digital terrain models. ITC Journal, 2, 129-138.
Fels, J., Matson, K. (1996) A cognitively-based approach for hydrogeomorphic land classification using digital terrain models, National Centre for Geographic Information and Analysis, Santa Barbara, CA, USA. CD-ROM
Flanders, D., Hall-Beyer, M., Pereverzoff, J. (2003) Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction. Canadian Journal of Remote Sensing, 29, 4, 441-452.
Giles, P. T., Franklin, S. E. (1998) An automated approach to the classification of the slope units using digital data. Geomorphology, 21,3-4, 251-264.
Guzzetti, F., Reichenbach, P. (1994) Towards a definition of topographic divisions for Italy. Geomorphology, 11, 1, 57-74.
Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31, 1-4, 181-216.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M. (2006) Estimating the quality of landslide susceptibility models. Geomorphology, 81, 1-2, 166-184.
Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., Cardinali, M. (2006) Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Sciences, 6, 115-131.
Hansen, A. (1984) Landslide hazard analysis. In: Brunsden, D. and Prior, D.B. (eds.), Slope instability, Wiley & Sons, New York, 523-602.
Hansen, A., Franks, C.A.M., Kirk, P.A., Brimicombe, A.J., Tung, F. (1995) Application of GIS to hazard assessment, with particular reference to landslides in Hong Kong. Geographical Information Systems in Assessing Natural Hazards, Kluwer Academic Publisher, Dordrecht, The Netherlands, 135-175.
Imagine, E. (2005) ERDAS field guide. Atlanta, Georgia, USA: ERDAS Inc, 770p
Irvin, B. J., Ventura, S. J., Slater, B. K. (1997) Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma, 77, 2-4, 137-154.
Klingseisen, B., Metternicht, G., Paulus, G. (2008) Geomorphometric landscape analysis using a semi-automated GIS-approach. Environmental Modelling Software, 23, 1, 109-121.
MacMillan, R., Pettapiece, W., Nolan, S., Goddard, T. (2000) A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems, 113, 1, 81-109.
Martha, T. R., Kerle, N., Jetten, V., van Westen, C. J., Kumar, K. V. (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology, 116, 1-2, 24-36.
Meijerink, A. (1988) Data acquisition and data capture through terrain mapping units. ITC-Journal (Netherlands ), 1988:1, 23-44.
Pennock, D. J., Zebarth, B., De Jong, E. (1987) Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma, 40, 3-4, 297-315.
Prima, O. D. A., Echigo, A., Yokoyama, R., Yoshida, T. (2006) Supervised landform classification of Northeast Honshu from DEM-derived thematic maps. Geomorphology, 78, 3-4, 373-386.
Schmidt, J., Hewitt, A. (2004) Fuzzy land element classification from DTMs based on geometry and terrain position. Geoderma, 121, 3-4, 243-256.
Schneevoigt, N. J., van der Linden, S., Thamm, H. P., Schrott, L. (2008) Detecting Alpine landforms from remotely sensed imagery. A pilot study in the Bavarian Alps. Geomorphology, 93, 1-2, 104-119.
Soille, P. (2004) Morphological image analysis, principles and applications, 2nd ed.. Springer, 391p.
Speight, J. G. (1977) Landform pattern description from aerial photographs. Photogrammetria, 32, 5, 161-182.
Strahler, A.N. (1952) Dynamic basis of geomorphology. Bull. Geol. Soc. American, 63, 9, 923-938.
Van Asselen, S., Seijmonsbergen, A. (2006) Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology, 78, 3-4, 309-320.
Van Den Eeckhaut, M., Reichenbach, P., Guzzetti, F., Rossi, M., Poesen, J. (2009) Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium. Natural Hazards and Earth System Sciences, 9, 507-521.
Van Westen, C. J., Soeters, R., Sijmons, K. (2000) Digital geomorphological landslide hazard mapping of the Alpago area, Italy. International Journal of Applied Earth Observation and Geoinformation, 2, 1, 51-60.
Verstappen, H.T. (1983) Applied geomorphology: Geomorphological survey for environmental development. Elsevier Scientific Publishing Co., Amsterdam.
Wilson, J. P., Gallant, J. C. (2000) Terrain analysis: principles and applications, John Wiley & Sons, Inc. New York, 479p
Xie, M., Esaki, T., Zhou, G. (2004) GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Natural Hazards, 33, 2, 265-282.
Xie, M., Esaki, T., Zhou, G., Mitani, Y. (2003) Geographic information systems-based three-dimensional critical slope stability analysis and landslide hazard assessment. Journal of Geotechnical and Geoenvironmental Engineering, 129, 1109-1118.
Zadeh, L. (1965) Application of fuzzy set theory. Fuzzy Sets, Information and Control, 8, 338-353.