| 研究生: |
劉金讓 Jin-Rang Liu |
|---|---|
| 論文名稱: |
觸控面板之高片電阻透明導電膜導電機制研究 Research of the mechanism for transparent conductive oxide films with high sheet resistance applied in touch panel |
| 指導教授: |
李正中
Cheng-Chung Lee 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 觸控面板 、透明導電膜 、ITO 、氧化銦錫 、超薄 |
| 外文關鍵詞: | ultrathin, indium tin oxide, ITO, TCO, touch panel |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科技日進千里的發展讓人們對生活品質的要求愈來愈高,近年來蓬勃發展的觸控市場,如觸控式手機、iPad、平板電腦、電子書…等,這些產品內都有著透明導電薄膜的應用。不同科技產品所需要的片電阻範圍不同,例如觸控面板的片電阻要求較高約在400Ω/□左右,以免片電阻過低產生誤觸感應的情況,而較高的片電阻可藉由導電膜製鍍較薄的厚度來得到,此外,薄化ITO膜亦可提高業界材料成本競爭力與出貨效率。
本論文利用磁控濺鍍法在室溫下製鍍ITO薄膜,隨後進行200℃~450℃的大氣退火,研究分析20nm以下的極薄層與一般膜厚退火導電機制差異,並探討不同靶材摻雜比例的影響。
以90% In2O3 + 10% SnO2靶材室溫製鍍膜厚20m的ITO膜片電阻為265Ω/□,在200℃與450℃的大氣退火之後分別有588Ω/□與572Ω/□的片電阻值,並且連同玻璃基板的總可見光平均穿透率在退火前後皆在85%以上。
ITO films have been deposited by DC pulse magnetron sputtering on glass (B270) at room temperature. The Ssheet resistance and resistivity were measured by Hall system and shownwere decreased when film thickness increased. Resistivity The resistivities of the as-deposited films with thickness 6 nm and 28 nm were 1.43*10-3 Ω-cm and 4.72*10-4 Ω-cm, respectivelyas deposited. As deposition, Tthe ultrathin ITO films are were amorphous. as deposited wAnd ithile the films became polycrystalline with of very small grains size when the film thickness was increased to about 71nm. And this is tThe reason is that makesthe less scattering grain boundary scattering tocauses the lower the resistivity.
The present work has shown that the properties of ultrathin ITO films deposited on glass exhibit changes with increasing thickness. This paper is focus on the ultrathin ITO film electrical properties change after atmosphere annealing process. for those film thicknesses below 28nm. ITO film with 6 nm thickness was still amorphous. Its carrier concentration after 200"℃" atmosphere annealing was lower than before annealing. When the film was annealing to 350"℃" under atmosphere, it became crystallization and showed a XRD peak at (2 2 2) with grain size 5.4nm. And the carrier concentration got sharply increased. Combining the relationship between the resistivity and the crystalline structure of ITO film, we found when the crystalline was beginning, the conductivity will be increased. This is because the tin become effective dopant and replace indium rather interstitial dopant. The best resistivity is 8.62*10-4 Ω-cm and the transmittance with substrate was greater than 90%, when the 6-nm-thickness ITO film was annealed at 450"℃" under atmosphere.
[1] http://www.eettaiwan.com/ART_8800642603_480702_NT_99cf6a1c.HTM
[2] 楊明輝, “透明導電膜”, 藝軒圖書出版社, 第53-72頁 (2006).
[3] T. Yamada, A. Miyake, S. Kishimoto, H. Makino, N. Yamamoto, T. Yamamoto, “Low resistivity Ga-doped ZnO thin films of less than 100 nm thickness prepared by ion plating with direct current arc discharge”, Applied Physics Letter 91, 051915 (2007).
[4] K. Baedeker, “Electrical conductivity and thermoelectric power of some heavy metal compounds”, Ann. Phys. (Leipzig) 22, 749 (1907).
[5] G. Rupprecht, “Untersuchungen der elektrischen und lichtelektrischen Leitfahigkeit dunner Indiumoxyd-schichten”, Z. Phys. 139, 504 (1954).
[6] J.L. Grieser, “Comparison of ITO Films Produced by Standard D.C. Sputtering and Ion Beam Assisted Sputtering”, 1995 Society of Vacuum Coaters, 38th Annual Technical Conference Proceedings, 155-162 (1995).
[7] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk, “ Dependence of oxygen flow on optical and electrical properties of DC-magnetron”, Thin solid Films 326, 72-77 (1998).
[8] C. G. Choi, K. No, W. J. Lee, H. G. Kim, S. O. Jung, W. J. Lee, W. S. Kim, S. J. Kim, C. Yoon, “Effects of oxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by DC magnetron sputtering”, Thin Solid Films 258, 274-278 (1995).
[9] A.N.H. Al-Ajili, S.C. Bayliss, “ A study of the optical, electrical and structural properties of reactively sputtered InOx and ITOx thin films”, Thin Solid Films 305, 116-123 (1997).
[10] S. K. Choi and J. I. Lee, “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering”, J. Vac. Sci. Technol. A 19, 2043-2047 ( 2001).
[11] W. M. Gnehr, U. Hartung, T. Kopte, “Pulsed Plasmas for Reactive Deposition of ITO Layers”, 2005 Society of Vacuum Coaters, 48th Annual Technical Conference Proceedings, 312-316 (2005).
[12] A. E. Hichou, A. Kachouane, J. L. Bubendorff, M. Addou, J. Ebothe, M. Troyon, A. Bougrine, “Effect of substrate temperature on electrical, structural, optical and cathodoluminescent properties of In2O3-Sn thin films prepared by spraypyrolysis”, Thin Solid Film 458, 263-368 (2004).
[13] Y. C. Park, Y. S. Kim, H. K. Seo, S. G. Ansari, H. S. Shin, “ITO thin films deposited at different oxygen flow rates on Si(100) using the PEMOCVD method”, Surface and Coatings Technology 161, 62-69 (2002).
[14] C. Guillén and J. Herrero, “Structure, optical, and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen”, Journal of Applied Physics 101, 013514 1-7 (2007).
[15] L. Kerkache, A. Layadi, A. Mosser, “Effect of oxygen partial pressure on the structural and optical properties of dc sputtered ITO thin films”, Journal of Alloys and Compounds 485 46–50 (2009).
[16] C. H. Yi, Y. Shigesato, I. Yasui, S. Takaki, “Microstructure of Low-Resistivity Tin-Doped Indium Oxide Films Deposited at 150∼200°C”, Japanese Journal of Applied Physics 34, L244– L247 (1995).
[17] Z. Qiao, R. Latz, D. Mergel, “Thickness dependence of In2O3:Sn film growth”, Thin Solid Films 466, 250-258 (2004).
[18] Y. S. Jung, “Spectroscopic ellipsometry studies on the optical constants of indium tin oxide films deposited under various sputtering conditions”, Thin Solid Films 467, 36-42 (2004).
[19] P. Thilakan, C. Minarini, S. Loreti, E. Terzini, “Investigations on the crystallization properties of RF magnetron sputtered indium tin oxide thin films”, Thin Solid Films 388 , 34-40 (2001).
[20] K.J.Kumar, N.R.C. Raju, A. Subrahmanyam, “Thickness dependent physical and photo catalytic properties of ITO thin films prepared by reactive DC magnetron sputtering”, Applied Surface Science 257, 3075-3080 (2010).
[21] L. Hao, X. Diao, H. Xu, B. Gu, T. Wang, “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates”, Applied Surface Science 254, 3504–3508 (2008).
[22] K. N. RAO, and S. KASHYAP, “Preparation and characterization of indium oxide and indium tin oxide films by activated reactive evaporation”, Surface Review and Letters 13, 221–225 (2006).
[23] J. R. Bellingham, W. A. Phillips, C. J. Adkins, ”Intrinsic performance limits in transparent conducting oxides”, Journal of Mateials Science Letter 11, 263-265 (1992).
[24] H. Odaka, Y. Shigesato, T. Murakami, S. Iwata, ”Electronic structure analyses of Sn-doped In2O3”, Japanese Journal Applied Physics 40, 3231 (2001).
[25] J. Ederth, “Electrical Transport in Nanoparticle Thin Films of Gold and Indium Tin Oxide”, doctoral degree dissertation, Uppsala University, 4 – 6 (2003).
[26] E. Terzini, P. Thilakan, C. Minarini, “Properties of ITO Thin Films Deposited by RF Magnetron Sputtering at Elevated Substrate Temperature’’, Materials Science and Engineering B 77, 110–114 (2000).
[27] P. K. Song, H. Akao, M. Kamei, Y. Shigesato, I. Yasui, ”Preparation and Crystallizastion of Tin-doped and Undoped Amorphous Indium Oxide Films Deposited by Sputtering”, Japanese Journal Applied Physics 38, 5224-5226 (1999).
[28] H. Kostlin, R. Jost, W. Lems, “Optical and electrical properties of doped In2O3 films”, Physica Status Solidi 29, 87-93 (1975).
[29] J. C. Manifacier, L. Szepessy, J. F. Bresse, M. Perotin, R. Stuck, “In2O3:(Sn) and SnO2:(F) films - application to solar energy conversion part II - Electrical and optical properties”, Materials Research Bulletin 14, 163-175 (1979).
[30] J. R. Bellingham, W. A. Phillips, C. J. Adkins, “Electrical and optical properties of amorphous indium oxide”, Journal Physics Condensed Matter 2, 6207 (1990).
[31] R. G. Dhere, T. A. Gessert, L. L. Schilling, A. J. Nelson, K. M. Jones, H. Aharoni, T. J. Coutts, "Electro-optical Properties of Thin Indium Tin Oxide Films; Limitations on Performance”, Solar Cells 21, 281-290 (1987).
[32] P. S. Kireev, “Semiconductor Physics”, Mir Publishers, 442 (1978).
[33] K.F. Huang, T. M. Uen, Y. S. Gou, C.R. Hiang and L. C. Yang, ” Temperature dependence of transport properties of evaporated indium tin oxide films”, Thin Solid Films 148, 7 -15 (1987).
[34] D. H. Zhang, H. L. Ma, “Scattering mechanisms of charge carriers in transparent conductiong oxide films”, Applied Physics 62, 487-492 (1996).
[35] J. Bruneaux, H. Cachet, M. Froment, A. Messad, ”Correlation between structural and electrical properties of sprayed tin oxide films with and without fluorine doping”, Thin Solid Films 197, 129-142 (1991).
[36] C. Kittel, “Introduction to Solid State Physics”, 5th ed., John Wiley & Sons, New York, 169 (1976).
[37] http://www.eettaiwan.com/ART_8800594429_480702_NT_d3ae6ccb_2.HTM
[38] http://www.eettaiwan.com/ART_8800641444_480502_NT_6840dbea.HTM
[39] http://www.candotec.com/touch.html