| 研究生: |
詹益杰 I-Chieh Chan |
|---|---|
| 論文名稱: |
單井垂直循環流場追蹤劑試驗數學模式發展 The development of a single-well vertical circulation flow tracer test mathematical model |
| 指導教授: |
陳瑞昇
Jui-Sheng Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 單井垂直循環流場 、追蹤劑試驗 、縱向延散度 、Laplace轉換有限差分法 |
| 外文關鍵詞: | Laplace transformed finite difference, single-well vertical circulation flow, tracer test, longitudinal dispersivity |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單井垂直循環流場追蹤劑試驗利用充氣式封塞將單一口井的井篩分隔成上、下兩段井篩段,以下段抽水及上段注水的方式於含水層建立垂直循環流場。待流場達穩態後,於注水井篩段注入追蹤劑並在抽水井篩段量測濃度穿透曲線,使用適當數學模式分析其濃度穿透曲線及上、下井篩段洩降差,即可同時推估含水層水平徑向、垂直方向水力傳導係數與縱向延散度。由於過去利用流管法所建立的數學模式僅適用於縱向延散度小於追蹤劑移動距離的十分之一的範圍,且無法預測追蹤劑於含水層之傳輸移動行為,所以本研究發展全新的數學模式用以描述單井垂直循環流場追蹤劑試驗。模式首先求解穩態單井垂直循環地下水流場解析解,將所得孔隙流速分量配合二階延散張量理論,利用Laplace轉換有限差分法求解二維圓柱座標系統移流-延散方程式,即可計算追蹤劑於含水層之濃度分布及抽水井篩段濃度穿透曲線,並可藉由相關參數敏感度分析建立水文地質參數推估方法。此全新的數學模式可用於分析現地試驗資料,可同時推估含水層水平徑向、垂直方向水力傳導係數與縱向延散度,而且其適用性不受縱向延散度範圍限制。
The basic design of a single-well vertical circulation flow tracer test involves an injection and an extraction chamber separated by some vertical distance and isolated from one another both using an inflatable packer and utilize a pump to create a vertical circulation flow field in an aquifer. After a steady-state flow field is established and the pumping rate and drawdowns in these chambers are measured, the tracer mass is injected into injection chamber and the concentration breakthrough curve is recorded in the extraction chamber. Using an appropriate mathematical model to analyze the breakthrough curves and drawdown in chambers, the horizontal hydraulic conductivity, the vertical hydraulic conductivity and longitudinal dispersivity can be estimated. Existing models based on streamtube approach are only valid for interpreting vertical circulation flow tracer test in a certain condition that the longitudinal dispersivity is an order of magnitude smaller than the tracer travel distance. This study presents a novel mathematical model for interpreting solute transport in a single-well vertical circulation flow tracer test. In developing the mathematical model, a steady-state analytical solution for drawdown distribution is first obtained and the radial and vertical components of pore velocity are determined to serve as the input for the advection-dispersion equation. Subsequently, the two-dimensional advection-dispersion equation in cylindrical coordinates for describing tracer transport vertical circulation flow tracer test is derived based on the second order dispersion tensor theory. The Laplace transformed finite difference technique is applied to solve the two-dimensional transport equation. The novel model has an advantage over existing models because it can be valid over a wide range of the ratio of the longitudinal dispersivity to the distance traveled by the tracer. The new mathematical model can apply to determine the necessary relationships for estimating the longitudinal dispersivity as well as the radial and vertical hydraulic conductivities.
李岡林,2004,單井循環流水力實驗之理論改進與發展,國立中央大學應用地質研究所碩士論文。
Blanford, W.J., M.L. Barackman, T.B. Boving, E.J. Klingel, G.R. Johnson, and M.L. Brusseau, 2001. Cyclodextrin-enhanced vertical flushing of a trichloroethene contaminated aquifer. Ground water Monitoring and Remediation, 21, 58-66.
Bear, J., 1979. Hydraulics of Groundwater, McGraw-Hill, New York, pp. 569.
Brooks, M.C., M.D. Annable, P.S.C. Rao, K. Hatfield, J.W. Jawitz, W.R. Wise, A.L. Wood, and C.G. Enfield, 2002. Controlled release, blind tests of DNAPL characterization using partitioning tracers. Journal of Contaminant Hydrology, 59, 187-210.
Chen, J.S., C.S. Chen, and C.Y. Chen, 2007. Analysis of solute transport in a radially divergent flow tracer test with scale-dependent dis- persion. Hydrological Processes : in press.
Chen, L., and R.C. Knox, 1997. Using vertical circulation wells for partitioning tracer tests and remediation of DNAPLs. Ground Water Monitoring and Remediation., 17(3), 161-168.
Crump, K.S., 1976. Numerical inversion of Laplace transforms using a Fourier Series approximation. J. Assoc. Comput. Mach., 23(1), 89-96.
de Hoog, F.R., J. H. Knight, and A. N. Stokes, 1982. An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. stat. comput., 3(3), 357-366.
Gelhar, L.W., and M.A. Collins, 1971. General analysis of longitudinal dispersion in nonuniform flow, Water Resources Research, 7(6), 1511-1521.
Halihan. T., and V.A. Zlotnik, 2000. Asymmetric dipole-flow test in a fractured carbonate aquifer, Ground Water, 40(5), 491-499.
Hantush, M.S., 1964. Hydraulics of wells, In: Chow, V.T. Ed., Advances in Hydroscience, Vol. 1, Academic Press, New York, pp. 281- 442.
Hyder Z., J.J. Butler Jr., C.D. McElwee and W.Z. Liu, 1994. Slug tests in partically penetrating wells, water Resour. Res., 30(11), 2945- 2957.
Hvilshøj, S., K.H. Jensen, and B. Madsen, 2000. Single-well dipole flow tests: parameter estimation and field testing, Ground Water, 38(1), 53-62.
Kabala, Z.J., 1993. The dipole-flow test: a new single-borehole tests for aquifer characterization, Water Resources. Research, 29(1), 99- 107.
Kerfoot, W.B., J.C. Schouten, and V.C.M. van Engen-Beukeboom, 1998. Kinetic analysis of pilot test results of the C-Sparge process. In: Wickramanayake, G.B. and R.E. Hinchee (Eds.), The First International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Monterey, California, pp. 271-277.
Knox, R.C., D.A. Sabatini, J. H. Harwell, R. E. Brown, C. C. West, F. Blaha, and C. Griffin, 1997. Surfactant remediation field demon- stration using a vertical circulation well. Ground water 35(6), 948-953.
Kruseman, G.P. and N.A. de Ridder, 1990. Analysis and Evaluation of Pumping Test Data, ILRI publication 47, Netherlands, pp. 377.
Moridis, G.J. and D.L. Reddel., 1991. The Laplace transform finite difference method for simulation of flow through porous media. Water Resour. Res., 27(8):1873-1884.
Ptak, T., M. Piepen brink and E. Martac, 2004. Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport—a review of some recent developments. Journal of Hydrology, 294, 122-163.
Sneddon, I.N., 1972. The Use of Integral Transforms, McGraw - Hill, New York, pp. 539.
Sudicky, E.A., 1989. The Laplace transform Galerkin technique: a time- continuous finite element theory and application to mass transport in groundwater. Water Resour. Res., 25(8):1833-1846.
Sutton, D.J., Z.J. Kabala, D.E. Schaad, and N.C. Ruud, 2000. The dipole -flow test with a tracer : a new single-borehole tracer test for aquifer characterization, Journal of Contaminant Hydrology, 44, 71-101.
Welty, C., and L.W. Gelhar, 1994. Evaluation of longitudinal dispersivity from nonuniform flow tracer tests, Journal of Hydrology, 153, 71- 102.
Zlotnik, V.A., and G. Ledder, 1996. Theory of dipole flow in uniform anisotropic aquifers, Water Resources Research, 32(4) , 1119- 1128.
Zlotnik, V.A., and B.R. Zurbuchen, 1998. Dipole probe: design and field applications of a single-borehole device for measurements of vertical variations of hydraulic conductivity, Ground Water, 36( 6) , 884-893.