| 研究生: |
趙奕然 YI-RAN-ZHAO |
|---|---|
| 論文名稱: |
利用LiDAR點雲及影像資料決定露頭節理結合面之研究 Determining Joint Patches of Outcrop Discontinuities by LiDAR Point Cloud Data and Field Image |
| 指導教授: |
倪春發
CHUEN-FA-NI |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | LiDAR 、不連續面 、點雲資料 、視窗採樣法 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
影響岩體水流情況甚鉅的孔隙率和滲透率,主要由不連續面在岩體中之空間分布以及連通性所控制。不連續面幾何參數的採樣,一般使用測線採樣法或視窗採樣等人工測量方法。近年來發展光達儀器常作為地質調查工具,本研究目的為討論地面光達應用於露頭調查的可行性,提出了一套分析方法,比對現地調查與光達點雲資料(point cloud data)。現地資料的收集分成兩部分,第一是使用視窗採樣法,對選定的露頭進行了三個視窗的不連續面資料收集,共採樣71筆不連續面資料,包括位態(orientation)、軌跡長(fracture trace)、開口寬(aperture)等等之定量參數,其中位態這項參數,將作為分析點雲資料(point cloud data)的依據:第二部分是利用光達儀器(Zoller+Frohlich scanner)對露頭面做光達掃描(light detection and ranging),獲得露頭表面的點雲資料。點雲分析使用Split Engineering開發的Split -FX,判釋裂隙出露面的位置以及位態,再與視窗採樣資料作比對。本研究首先進行Split-FX分析參數的敏感度分析,再由影像資料中選取13處出露面作為分析依據,根據Split-FX點雲資分析方法,判釋此13處出露面之幾何面位置與位態,將所得位態與位置和現地調查結果作分析比對。結果顯示13處出露面皆於點雲資料中判釋出相近之幾何面,兩者的位態平均誤差為13°/7.46°(dip direction/dip),透過此分析結果,初步可認定光達掃描方法可應用於露頭調查工作,藉後續點雲資料分析方法可協助研究者分析現地不連續面特性。
The hydraulic parameters such as porosity and permeability in a rock are significantly controlled by the distribution of discontinuities in rock mass. Scanline or window samplings are the typical approaches for discontinuity samplings. Recent advances in LiDAR scanning techniques have become the useful tools for geological investigations. This study aims to evaluate the applicability of LiDAR technology in outcrop discontinuity investigations. The field investigations are divided into two different categories: the window sampling and light detection and ranging scan LiDAR. For the window sampling, this study collected 71 discontinuity data from three selected windows on an outcrop. These discontinuity parameters include orientations, fracture traces, and apertures. Split-Fx software developed by Split Engineering was employed to analyze the LiDAR point cloud data. A sensitivity analysis was first conducted to assess the impact of Split-Fx parameters on estimation results. Results of discontinuities from window and LiDAR samplings were compared based on the selected 13 discontinuities from the field images. The comparison results showed that the differences of orientation between LiDAR and window samplings is 13°/7.46°(dip direction/dip). Such result indicates that the LiDAR scanning can be a valuable technique for discontinuity surveys and parameters estimations.
[1] 黃淞洋,「地表及井下不連續面參數分析與數值模擬-以金門東部花崗片麻岩體為例」,國立中正大學,碩士論文,民國97年。
[2] 徐慶國,「岩體不連續面之量測及其空間分布之分析與模擬-以金門翟山坑道花崗片麻岩體為例」,國立中正大學,碩士論文,民國97年。
[3] Priest, S.D., and Hudson, J.A., “Estimation of discontinuity spacing and trace length using scanline surveys”, International Journal of Rock Mechanics and Mining Sciences, Vol 18, pp. 183-197, 1981.
[4] Priest, S.D., Discontinuity analysis for rock engineering, Chapman and Hall, London, 1993.
[5] Kulatilake, P.H.S.W., Wathugala, D.N., and Stephansson, O., “Joint networkmodeling with a validation exercise in Stripa Mine”, International Journal of Rock Mechanics and Mining Sciences, Vol 30, pp. 503-526, 1993.
[6] Song, J.J., and Lee, C.I., “Estimation of Joint length distribution using window sampling ”, International Journal of Rock Mechanics and Mining Sciences, Vol 38, pp 519-528, 2001.
[7] Voeckler, H., Allen, D.M., “Estimating regional-scale fractured bedrock hydraulic conductivity using discrete fracture network (DFN) modeling”, Hydrogeology Journal, vol 20, pp. 1081-1100, 2012.
[8] 李振誥,「岩體不連續面之分組與合適度檢定之研究」,國立成功大學,國科會研究報告,民國92年。
[9] International Society for Rock Mechanics, “Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses”, International Journal of Rock Mechanics and Mining Sciences ,vol 15, pp. 319-368, 1978.
[10] Fracman Technology Group, FracMan 7.4, 2013, Reference sources: http://www.fracman.com/home/software/fracman-version-history/software-fracman-7-4/.
[11] Vyazmensky, A., Elmo, D., Stead, D., Rance, J.R., “Combined finite-discrete element modeling of surface subsidence associated with block caving mining”, Rock Mechanics Symposium, Proc. 1St Canada-U.S. Rock Mechanics Symposium, pp. 27-31, Vancouver, May 2007.
[12] Tiren, S.A., Askling, P., Wanstedt, S., “Geologic site characterization for deep nuclear waste disposal in fractured rock based on 3D data visualization”, Engineering Geology, Vol 52, pp. 319-346, 1999.
[13] 管立豪,「光達技術在林業經營管理應用」,台灣林業期刊,33(6),25-29頁,2007年。
[14] 傅桂林:空載光達於崩塌測計模式應用。2000年9月21日,取自http://swcdis.nchu.edu.tw/AllDataPos/AdvancePos/8098042006/。
[15] 陳威誠,「由光達覆蓋模型萃取數值高程模型之研究」,國立交通大學,碩士論文,民國93年。
[16] 費立沅,「地質調查新利器¬-空載光達」,地質,31(2),pp. 18-19,2012年。
[17] Lim, M., Petley, D.N., Rosser, N.J., Allison, R.J., Long, A.J. and Pybus, D., “Combined digital photogrametry and time-of-flight laser scanning for monitoring cliff evolution”, Photogrammetry record, vol 20, pp, 109-129, 2005.
[18] Renslow, M. “Development of a bare ground DEM and canopy layer in NW forestlands using high performance LIDAR”, ESRI International User Conference, 2001.
[19] Zarchary H., Ryan T., Shauna H., Reg S., Sitansu P., “Use of LiDAR-Based Elevation Data for Highway Drainage Analysis: A Qualitative Assessment”, Mid-Continent Transportation Research Symposium, lowa, 2003.
[20] William, H.S., “Landslides mapped using LIDAR imagery, Seattle, Washington”, USGS report, No.2004-1396, 2004.
[21] Ackermann, F., “Airborne laser scanning – present status and
future expectations”, ISPRS Journal of Photogrammetry & Remote Sensing, vol 54,1999.
[22] 中興測量有限公司,光達技術。2012年,取自http://www.chsurvey.com.tw/page04.html。
[23] 劉榮寬、徐偉城,2008。「空載光達於地理空間情報之應用」,國防雜誌,23(6),2008。
[24] 史天元,「測深光達原理與國外測試成果」,內政部『辦理LiDAR之高精度及高解析度數值地形測繪、資料庫建置與應用推廣工作案』,pp. 199-122,新竹縣,2005年。
[25] Image notes, Airborne LiDAR for Archeology of Forested Areas, 2011, Reference sources: http://www.imagingnotes.com/go/article_freeJ.php?mp_id=264.
[26] Otoo, J. N., Maerz, N. H., Duan, Y., Xiaoling, L., “LiDAR and optical imaging for 3-D fracture orientations”, American Rock Mechanics Association, 2011.
[27] Kemeny, J., Turner, K., Norton, B., “LIDAR for Rock Mass Characterization:Hardware, Software, Accuracy and Best-Practices”, American Rock Mechanics Association, 2006.
[28] Strouth, A, and Eberhard, E., “The use of LIDAR to overcome rock slope hazard data collection challenges at Afternoon Creek, Washington”, Methods for Rock Face Characterization workshop, pp. 49-62, June 2006.
[29] 楊濟豪、王泰典、曹孟真、詹尚書、李亮瑩、許宗傑、柯承宏、陳怡頻,「地面光達應用於露頭不連續面調查與岩體工程特性評估探討」,中華水土保持學報,45(1),1-18頁,2014年.
[30] Mikos, M., Vidmar, A., and Brilly, M., “Using a laser measurement system for monitoring morphological changes on the Strug rock fall”, Nat. Hazards Earth Syst. Sci., pp. 143–153, Slovenia, 2005.
[31] Fekete, S., Diederichs, M., and Lato, M., “Geotechnical and operational applications for 3-dimentionallaser scanning in drill and blast tunnels”, Tunnelling and Underground Space Technology, 25(5), pp. 614-628, 2010.
[32] Burton, D., Dunlap, D.B., Wood, L.J., and Flaig, P.P., “LiDAR intensity as a remote sensor of rock properties”, Journal of Sedimentary Research, 81(5), pp. 339-347, 2010.
[33] Lato, M., Diederichs, M.S., Hutchinson, D.J., and Harrap, R., “Optimization of LiDAR scanning and processingfor automated structural evaluation of discontinuities in rock masses.”, International Journal of Rock Mechanics and Mining Sciences, 46(1), pp. 194-199, 2009.
[34] Lato, M., Diederichs, M.S., “Bias Correction for View-limited LiDAR Scanning of Rock Outcrops for Structural Characterization”, Rock Mech Rock Eng, vol 43, pp. 615-628, 2010.
[35] Slob, S., Hack, H.R.G.K., Feng, Q., Roshoff, K., and Turner, A.K., “Fracture mapping using 3D laser scanning techniques”, The 11th Congress of the International Society for Rock Mechanics: The Second Half Century of Rock Mechanics, Lisbon, 2007.
[36] Siefko, S., Hack, R., van Knapen, B., Turner, K., and Kemeny, J., “Method for automated discontinuity analysis of rock slopes with three-dimensional laser scanning”, Transportation Research Record, No. 1913, pp. 187-194, 2005.
[37] Kemeny, J., Norton, B., Turner, K, “Rock slope stability analysis utilizing ground-based LIDAR and digital image processing”, Felsbau, 24(3), pp. 8-15, 2006.
[38] Kemeny, J. and Post, R., “Estimating Three-Dimensional Rock Discontinuity Orientation from Digital Images of Fracture Traces”, Computers and Geosciences, 29(1), pp. 65-77, 2003.
[39] Split Engineering, Split Engineering home page, 2010. Reference sources: http://www.spliteng.com/downloads/SplitFXBrochure2007.pdf.
[40] 台灣儀器行,PENTAX 3D雷射掃描儀,2013年,取自http://www.ticgroup.com.tw/goods/goods_details.php?mes=m25&cat=102&goods_ID=327。
[41] 北京中翰儀器有限公司,三維激光掃瞄系統,2013年,取自www.zhinc.com.cn。
[42] 塗明寬、陳文政,台灣地質圖說明書-竹東圖幅,中央地質調查所,台北縣,1991年。
[43] 中央地質調查所:國土地質資訊,2014年。取自http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm。
[44] Bear, J., “Modeling flow and contaminant transport in fractured rocks”, Academic press, California, 1993.
[45] M. Mauldon., W. Dershowitz., A Multi-Dimentional System of Fracture AbundaceMeasures, Geological Society of American Annual Meeting, Nevada, 2000.
[46] Wang, X., “Stereological Interpretation of Rock Fracture Traces on
Borehole Walls and Other Cylindrical Surfaces”, Virginia, 2005.
[47] Blyth, F.G.H., Freitas, M.H.D., A geology for engineers, Edward Arnold, 1974.