跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉天煜
Tien-Yu Yeh
論文名稱: 利用灰階權重法降低誤碼率之研究
Research of Reducing Bit Error Rate by Gray Level Weighting Method
指導教授: 歐陽盟
Mang Ou-Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 93
中文關鍵詞: 誤碼率全像儲存
外文關鍵詞: Bit Error Rate, Holographic data storage
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究之目的為減少全像儲存系統中像差所產生的誤碼,使用錯誤訂正碼中的RS碼能有效解決隨機雜訊,還原圖形時加入灰階權重法,解決使用人工定位方式所造成的大量誤碼。使用灰階權重法後,RS碼可完全訂正還原編碼頁面中的誤碼,得到沒有誤碼的解碼圖。
    當光學系統存在失焦或透鏡像差較嚴重時,灰階權重法亦能有效降低誤碼數,可知灰階權重法降低了全像儲存系統對於光學品質的需求。利用高斯累加機率圖求得平均數與標準差,畫出與實驗之灰階分佈吻合的高斯分佈曲線,計算出還原圖形誤碼率的理論值,使用立景LCoS與普通透鏡時得到最佳誤碼率之理論值4.19×10^-10。


    The purpose in this study is to reduce the error bits caused in the holographic data storage system, and use the RS code of error correction codes to slove the random noise effectively. After using the gray level weighting method, RS code can correct all error bits of reduced coding pages, and get decoded figure without error bits.
    The gray level weighting method can decrease error bits effectively when optical system has defocus aberration or more serious lens aberration. We can know that using the gray level weighting method can decrease the optical demand of holographic data storage. Utilize Gaussian accumulate probability to get the mean value and standard deviation to describe the Gaussian destribution curve matched the gray level distribution of actual experiment. Calculate the theoretical value of bit error rate of reduced figure. Using the Himax LCoS and common lens to get the optimal theoretical value of Bit Error Rate is 4.19×10^-10。

    中文摘要..................................................i 英文摘要.................................................ii 致謝....................................................iii 目錄.....................................................iv 圖目錄...................................................vi 表目錄....................................................x 第一章 緒論..............................................1 1.1 研究動機....................................1 1.2 全像儲存之發展..............................2 第二章 全像儲存之系統與原理..............................4 2.1 全像儲存原理................................4 2.1.1 全像記錄與重建...................4 2.1.2 布拉格條件.......................6 2.2 全像系統介紹................................8 2.2.1 離軸全像系統.....................8 2.2.2 同軸全像系統.....................9 2.3 全像系統元件之改良.........................12 2.3.1 雷射光源........................12 2.3.2 高NA物鏡與無聚焦系統............12 2.3.3 相位遮罩........................14 2.4 二值化頁面之誤碼率與訊雜比.................14 2.5 體積全像計算與點光源擴散響應...............17 2.5.1 相位疊加法......................17 2.5.2 近距離條件下之 Fresnel 繞射.....19 2.5.3 同軸系統之PSF公式推導...........21 第三章 全像儲存系統之像差...............................25 3.1 系統像差...................................25 3.1.1 球差............................26 3.1.2 彗差............................27 3.1.3 像散............................29 3.1.4 場曲............................29 3.1.5 畸變............................30 3.2 失焦影像...................................31 第四章 編碼原理與影像校正還原...........................32 4.1 全像編碼流程與簡介.........................32 4.2 常用之全像編碼種類.........................33 4.2.1 調變碼..........................34 4.2.2 里德-所羅門碼...................36 4.3 灰階權重法.................................38 4.3.1 定位點..........................42 4.3.2 閥值選定........................47 第五章 實驗結果與分析...................................49 5.1 實驗架構...................................49 5.2 實驗結果...................................52 5.3 結果分析...................................61 第六章 結論與未來展望...................................88 6.1 結論.......................................88 6.2 未來發展...................................91 參考文獻.................................................92

    [1] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
    [2] T. Shimura,“Holographic Memory Rodmap,”IWHM 2008 Digest, 22C2(2008).
    [3] H. Horimai, X. Tan,“Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943-947 (2007).
    [4] E. Chuang, K. Curits, Y. Yang, A. Hill,“Consumer holographic read-only memory reader with mastering and replication technology”, Opt. Lett. 31,1050-1052(2006)
    [5] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
    [6] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963).
    [7] L. d’Auria, J. P. Huignard and E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. MAG-9, 83-94 (1973).
    [8] E. Hecht, Optics, 4th ed., Addison Wesley, 2002.
    [9] H. Coufal, D. Psaltis and G. T. Sincerbox, Eds., Holographic data storage, Berlin, Germany: Springer-Verlag, 2000.
    [10] M. P. Bernal et al., “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360-2374 (1996).62).
    [11] H. Hormai,“Collinear holography,”Proc. 5th Pacific Rim Conference on Lasers and Electro-Optics 1, 376-377.
    [12] J. W. Goodman, Introduction to Fourier optics, 2nd ed., McGraw-Hill Book Co., Inc., 2002.
    [13] H. Horimai and X. Tan,“Collinear technology for holographic versatile disk,”Appl. Opt. 45, 910-914(2006).
    [14] H. Horimai,“Information recording method, reproducing method, and recording/reproducing method utilizing holography.”United States Patent, US 7321542 B2 (2008).
    [15] C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695-700 (1970).
    [16] C. Gu, G. Sornat and J. Hong, “Bit-error rate and statistics of complex amplitude noise in holographic data storage,” Opt. Lett. 21, 1070-1072 (1996).
    [17] J. Heanue, M. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
    [18] C. C. Sun,“A simplified model for diffraction analysis of volume holograms,”Opt. Eng. 42, 1184-1185(2003).
    [19] 余業緯,同軸全像儲存系統之特性與改良及溫度補償,國立中央大學光電所博士論文,中華民國九十八年。
    [20] C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng and M. F. Tsai“Point spread function of a collinear holographic storage system,”Optics Express 15, 18111-18118(2007).
    [21] 鄭智元,利用相位調製改良同軸式全像體積全像儲存系統,國立中央大學光電所碩士論文,中華民國九十七年。
    [22] 張宏,幾何光學,東華書局出版社,中華民國七十六年十月。
    [23] Virendra N.Mahajan,“Optical imaging and aberrations,”SPIE, Washington, 1998.
    [24] C. Gu and F. Dai, “Cross-talk noise reduction in volume holographic storage with extended recording reference,” Opt. Lett. 20, 2336-2338 (1995).
    [25] B. P. Bernal et al., “Balancing inter-pixel crosstalk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377-5385 (1998)
    [26] W. C. Chou and M. A. Neifeld, “Interleaving and error correction in volume holographic memory systems,” Appl. Opt. 37, 6951-6968 (1998).
    [27] T. Etzion and A. Vardy, “Two-dimensional interleaving schemes with repetitions: Constructions and bounds,” IEEE Trans. Inform. Theory 48, 428-457 (2002).
    [28] W. X. Shang, Q. S. He and G. F. Jin, “Nonlinear blind equalization for volume holographic data storage,” Chinese Phys. Lett. 21, 1741-1744 (2004).
    [29] G. W. Burr et al., “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639-641 (1997).
    [30] M. A. Neifeld and J. D. Hayes, “Error-correction schemes for volume optical memories,” Appl. Opt. 34, 8183-8191 (1995).
    [31] A. Suto and E. Lorincz, “Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik 115, 541-546 (2004).
    [32] J. J. Ashley and B. H. Marcus, “Two-dimensional low-pass filtering codes,” IEEE Trans. Commun. 46, 724-727 (1998).
    [33] 林銀議,數位通訊原理−編碼與消息理論,五南書局,中華民國九十四年。

    QR CODE
    :::