| 研究生: |
彭孟超 Meng-chao Peng |
|---|---|
| 論文名稱: |
液滴透鏡曲率調控機制之探討 Study of Profile Manipulation in Liquid Lens |
| 指導教授: |
楊宗勳
Tsung-hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 液體透鏡 、液滴 、曲率 |
| 外文關鍵詞: | liquid lens, drops, curvature |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最古老的液體透鏡製作,可以追溯至17 世紀,發展至今,已有許多不同的製作方式,液壓式、熱效應、介電泳動與目前已有商業產品上市的電濕式液體透鏡,利用電壓的改變,調整透鏡的曲面變化,達到變焦的目的,在這商品不斷地微型化的時代,液體透鏡具有高度的競爭力。
本文利用交流電訊號的電場變動,對液滴的曲率變化做探討,改變峰值電壓與頻率,分析液滴曲率的變化,發現在較低的峰值電壓驅動下,頻率對液滴曲率變化影響較小,高峰值電壓作用下,頻率的改變與液滴曲率變化沒有固定之趨勢,高於3kHz 之後,液滴曲率變化趨於穩定值而不再改變。
此外,交流電的作用使液滴產生振動現象,在不同頻率與峰值電壓作用下,液滴振動模式呈現不同的變化,相同的模式仍有不同的振動形狀,因此在交流電的作用下,可以使液體透鏡展現出更多元的應用。
The fabrication of the oldest liquid lens can be traced to the 17th century.The liquid lens has been developed many kinds of fabrication method as fluidic
pressure, thermal effect, dielectrophoresis and electrowetting so far. Nowadays,the liquid lens based on electrowetting has been commercialization. The applied
electrical voltage can be used to tune the curvature of lens for the tunable-focus.For the time being, the liquid lens has become of very high competition.
In this work, the electric field of AC signal has been explored to investigate the change of curvature of liquid lens. In the analysis, the result liquid curvature is highly dependent on the amplitude and the frequency of the applied electric voltage. It is found that the lower the amplitude of the electric voltage is applied
on the liquid lens, the less the frequency variation on the curvature is. While the higher voltage is applied, the changes of the drop curvature become irregular as
frequency increasing. When the frequency is above 3 kHz, the drop curvature will be almost steady and independent of the applied electric voltage change..
Furthermore, the AC signal induces the drops to vibrate. The vibration modes are also exploited in the amplitude-frequency phase diagram. It is expected to drive the liquid lens by AC signals with much more efficiency.
參考文獻
[1]M. Jam and G. Lyon, "Variable focal length imaging device," US Patent (2005).
[2]R. L. Peng, J. B. Chen, C. Zhu, and S. L. Zhuang, "Design of a zoom lens without motorized optical elements," Optics Express 15, 6664-6669 (2007).
[3]S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, "Focusing by electrical modulation of refraction in a liquid crystal cell," 23, 289 (1984).
[4]T. Nose and S. Sato, "A liquid crystal microlens obtained with a non-uniform electric field," Liquid Crystals 5, 1425-1433 (1989).
[5]Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Optical Materials 21, 643-646 (2003).
[6]E. Hecht, Optics (Addison Wesley, 2002).
[7]祝澄, 彭潤玲, 陳家璧, "基于電濕效應的雙液體透鏡," 大學物理 26, 57-62 (2007).
[8]H. Ren and S. T. Wu, "Tunable-focus liquid microlens array using dielectrophoretic effect," Optics Express 16, 2646-2652 (2008).
[9]H. W. Ren and S. T. Wu, "Variable-focus liquid lens," Optics Express 15, 5931-5936 (2007).
[10]H. W. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Optics Express 14, 8031-8036 (2006).
[11]H. Ren and S. T. Wu, "Variable-focus liquid lens by changing aperture," Appl. Phys. Lett. 86, 211107 (2005).
[12]M. Agarwall, R. A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J Micromech Microengineering 14, 1665-1673 (2004).
[13]N. Chronis, G. L. L14. J. Chen, W. S. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," J Micromech Microengineering 14, 675-680 (2004).
[14]J. Chen, W. S. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," J Micromech Microengineering 14, 675-680 (2004).
[15]P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[16]L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[17]粘正勳, 邱聞鋒, "介電泳動-承先啟後的奈米操縱術," 物理雙月刊 3, 491-497 (2004).
[18]C. C. Cheng and J. A. Yeh, "Dielectrically actuated liquid lens," Optics Express 15, 7140-7145 (2007).
[19]S. Romi, A. David, and B. Bruno, "20. C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, "Control of the Shape of Liquid Lenses on a Modified Gold Surface using an Applied Electrical Potential Across a Self-Assembled Monolayer," Langmuir 11, 2242-2246 (1995).
[20]C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, "Control of the Shape of Liquid Lenses on a Modified Gold Surface using an Applied Electrical Potential Across a Self-Assembled Monolayer," Langmuir 11, 2242-2246 (1995).
[21]B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," European Physical Journal E 3, 159-163 (2000).
[22]S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[23]B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, "Electrowetting-based variable-focus lens for miniature systems," Optical Review 12, 255-259 (2005).
[24]Varioptic, http://www.varioptic.com/en/index.php.
[25]M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brevignon, "Laser Projection Printing," Solid State Technol., (1980).
[26]Y. Ishii, K. Murata, and C. -. Han, "Reshaping collimated laser beams with Gaussian profile to uniform profiles," Applied Optics 22, 3644-3647 (1983).
[27]J. A. Hoffnagle and C. M. Jefferson, "Beam shaping with a plano-aspheric lens pair," 42, 3090-3099 (2003).
[28]P. W. Rhodes and D. L. Shealy, "Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis," Applied Optics 19, 3545-3553 (1980).
[29]何慶浤, 曹恒光, "電解質溶液的表面張力-蒙地卡羅模擬法," 國立中央大學化學工程與材料工程研究所, (2003).
[30]J. Lee and C. J. Kim, "Surface-tension-driven microactuation based on continuous electrowetting," J Microelectromech Syst 9, 171-180 (2000).
[31]T.A. Mcmahon and and J.T. Bonner, On Size and Life, Scientific American Books, (1983).
[32]C. Quilliet and B. Berge, "Electrowetting: a recent outbreak," Current Opinion in Colloid & Interface Science 6, 34-39 (2001).
[33]F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," Journal of Physics-Condensed Matter 17, R705-R774 (2005).
[34]ASAP, http://www.breault.com/index.php.
[35]V. N. Mahajan, Optical Imaging and Aberrations , SPIE Optical Engineering Press, (1998).
[36]H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, "Low voltage electrowetting-on-dielectric," J. Appl. Phys. 92, 4080-4087 (2002).
[37]林師勤, 楊宗勳, "介電電濕式數位微流體驅動系統之探討," 國立中央大學光電所, (2004).
[38]米本和也, CCD/CMOS影像感測器之基礎與應用 (全華科技圖書, 2005).
[39]A. Quinn, R. Sedev, and J. Ralston, "Contact angle saturation in electrowetting," J Phys Chem B 109, 6268-6275 (2005).
[40]J. M. Oh, S. H. Ko, and K. H. Kang, "Shape Oscillation of a Drop in ac Electrowetting," Langmuir (2008).