| 研究生: |
陶仕晉 Shi-jin Tao |
|---|---|
| 論文名稱: |
腰椎後路穩定系統設計最佳化及其生物力學影響 |
| 指導教授: | 黃俊仁 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 非骨融合手術 、後路穩定系統 、有限元素法 、田口品質法 、主成份分析 |
| 外文關鍵詞: | Non-Fusion Surgery, Posterior Stabilization System, Finite Element Methods, Taguchi Methods, Principal Component Analysis |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人體脊椎會因為老化或意外產生病變。本文主要是探討當人體脊椎有椎間盤退化情形,進行腰椎非骨融合手術後,探討腰椎的初期生物力學行為。同時考量微創手術便利性新設計一種後路穩定系統。
本研究使用AMIRA 與SolidWorks 建立L3-L5 腰椎模型,將L4/5椎間盤更改為椎間盤退化之參數,並分別植入剛性穩定系統、DYNESYS系統,再以ANSYS Workbench進行有限元素分析,探討其初期之生物力學行為。此外將新設計系統植入退化模型後進行田口品質分析。探討的品質特性有L3/4椎間盤運動範圍(ROM)、L3/4椎間盤應力與L4/5椎間盤。最後找出新設計系統的最佳化設計,並與其他系統進行比較。
結果顯示在前彎、後仰、側彎與扭轉等四個運動模式,新設計系統在品質特性L3/4椎間盤ROM以多品質最佳化效果最佳。但在品質特性L4/5椎間盤應力以單一品質最佳化效果最佳。各運動模式下產生之最佳化系統以扭轉模式為最佳設計(T-BEST)。退化模型在退化節(L4/5)因髓核脫水與纖維環變硬後,在各運動模式此節的運動範圍(ROM)均減少,且應力均有提升的情形。當植入剛性桿除了前彎其餘運動模式在植入節 (L4/5)應力均會降低,產生應力遮蔽情形。植入DYNESYS系統則在前、後彎時植入節 (L4/5)應力明顯提升;在鄰近節(L3/4)植入剛性桿後ROM有提升,相反的在植入DYNESYS系統後則ROM提升情況產生的並不明顯。植入T-BEST系統,在植入節(L4/5)椎間盤於大多數的運動模式均能恢復與健康模型相近的應力。與健康模型相比,植入T-BEST系統在鄰近節(L3/4)比植入DYNESYS系統有較佳的ROM值。T-BEST滿足了一定的穩定度且有比剛性模型較高的活動量。
The human spine causes lesions because of aging or accidents. This article focuses on the human spine has degenerative disc. After non-fusion surgery, the initial biomechanical behaviors were discussed. We not only designed a posterior stabilization system but also considered the convenience of minimally invasive surgery at the same time.
The software AMIRA and SolidWorks were adopted to establish the L3-L5 lumbarmodel. The property of L4/L5 intervertebral disc was changed by degeneration parameter. The model was implanted by rigid stabilization system and DYNESYS stabilization system, respectively in difference. The initial biomechanical behavior was explored by using ANSYS Workbench to perform finite element analysis. In addition, the Taguchi methods analysis was performed after the degradation model was implanted by the new design system. There were characteristics of discussing qualities that were range of motion of L3/4 disc, stress of L3/4 disc, and stress of L4/5 disc. Finally, the optimal design of the new design system was founded and compared with other systems.
The results showed that the quality characteristics of new design system of multi-quality optimized is the best on ROM of L3/4 disc in the case of flexion, extension, lateral Bending, and rotation. However, the quality characteristics of new design system that single-quality optimization is the best on stress of L4/5 disc in the each motion mode. Each motion mode produced the optimize systems. The rotation mode was the best in each motion mode (T-BEST). The ROM of degradation model was reduced on the degradation disc (L4/5) in each motion mode, and the stress of degradation disc was increased because dehydration of nucleus pulposus and hardening of annulus. When the degradation model was implanted by rigid rod, the stress of implanted festivaldisc (L4/5) was reduced except flexion. It was stress shielding case. When the degradation model was implanted by DYNESYS, the stress of implanted festival disc (L4/5) was increased significantly in flexion and extension. When the degradation model was implanted by rigid rod, the ROM of adjacent disc (L3/4) was increased, and when the degradation model was implanted by DYNESYS, the stress was not increased in flexion and extension. The model was similar to health model which was implanted T-BEST system on the stress of implanted festival disc (L4/5). The model which was implanted T-BEST system is better value than the model that was implanted DYNESYS system compared with healthy model on the ROM of adjacent disc. T-BEST met a certain amount of stability and a higher activity than the amount of rigid rod.
[1] Hsu KY, Zucherman J, White A, et al. Deterioration of motion segments adjacent to lumbar spine fusions. Presented at the Annual Meeting of the North American Spine Society, 1988;24-27, Colorado Springs, Colorado.
[2] Lee CK. Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 1988;13:375-77.
[3] Rahm MD, Hall BB. Adjacent-segment degeneration after lumbar fusion with instrumentation: A retrospective study. Journal of Spinal Disorders 1996;9:392-400.
[4] Schlegel JD, Smith JA, Schleusener RL. Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine 1996;21:970-81.
[5] Ghiselli G, Wang JC, Bhatia NN, et al. Adjacent segment degeneration in the lumbar spine. Journal of Bone & Joint Surgery, July 7, 2004;86-A:1497-1503, Los Angeles, California.
[6] Grob D, Benini A, Junge A, et al. Clinical experience with the DYNESYS semirigid fixation system for the lumbar spine: surgical and patient - oriented outcome in 50 cases after an average of 2 years. Spine 2005;30:324-331.
[7] Schnake KJ, Schaeren S, Jeanneret B. Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine 2006;31:442-9.
[8] Kumar A, Beastall J, Hughes J, et al. Disc changes in the bridged and adjacent segments after DYNESYS dynamic stabilization system after two years. Spine 2008;33: 2909-14.
[9] Cakir B, Carazzo C, Schmidt R, et al. Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine. Spine 2009;34:1287-91.
[10] Stoffel M, Behr M, Reinke A, et al. Pedicle screw - based dynamic stabilization of the thoracolumbar spine with the Cosmic® - system: a prospective observation. Acta Neurochirurgica 2010;152:835-43.
[11] Zindrick MR, Wiltse LL, Widell EH, et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clinical Orthopaedics and Related Research 1986;203:99-112.
[12] Schmoelz W, Huber JF, Nydegger T, et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments an in vitro experiment. Journal of Spinal Disorders & Techniques 2003;16:418-23.
[13] Niosi CA, Zhu QA, Wilson DC, et al. Biomechanical characterization of the three - dimensional kinematic behaviour of the DYNESYS dynamic stabilization system: An in vitro study. European Spine Journal 2006;15:913-22.
[14] Goto K, Tajima N, Chosa E, et al. Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three - dimensional finite element analysis). Journal of Orthopaedic Science 2003;8:577-84.
[15] Rohlmann A, Zander T, Schmidt H, et al. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. Journal of Biomechanics 2006;39:2484-90.
[16] Rohlmann A, Burra NK, Zander T, et al. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: A finite element analysis. European Spine Journal 2007;16:1223-31.
[17] Shin DS, Lee K, Kim D. Biomechanical study of lumbar spine with dynamic stabilization device using finite element method. Computer - Aided Design 2007; 39:559-67.
[18] Ruberte LM, Natarajan RN, Andersson GB. Influence of single - level lumbar degenerative disc disease on the behavior of the adjacent segments-a finite element model study. Journal of biomechanics 2009;42:341-8.
[19] Zhong ZC, Liu CL, Hsu HW, et al. Effect of the cord pretension of the DYNESYS dynamic stabilization system on the biomechanics of the lumbar Spine: A finite element analysis. European Spine Journal 2011;30:1850-8.
[20] Yang K, Teo EC, Fuss FK. Optimization of cervical ring cage by Taguchi philosophy. 1st International Bioengineering Conference, September, 2004;405-7, Singapore.
[21] Lee CC, Zhang M. Design of monolimb using finite element modelling and statistics-based Taguchi method. Clinical Biomechanics 2005;20:759-66.
[22] Lina CL, Changb WJ, Lina YS, et al. Evaluation of the relative contributions of multi - factors in an adhesive MOD restoration using FEA and the Taguchi method. dental materials 2009;25:1073-81.
[23] Lin CL, Yu JH, Liu HL, et al. Evaluation of contributions of orthodontic mini - screw design factors based on FE analysis and the Taguchi method. Journal of biomechanics 2010;43:2174-81.
[24] 蘇崇瑋,「微創椎弓根螺釘補強之最佳化分析」,國立中央大學,碩士論文,民國101年7 月。
[25] 張湧翔,「可撐式椎籠於骨融合手術初期之生物力學影響」,國立中央大學,碩士論文,民國102年7 月。
[26] 網路資料︰Notes on Anatomy and Physiology: The Intervertebral Discs。2010,取自http://ittcs.wordpress.com/2010/06/01/anatomy-and-physiology-the-intervertebral-discs/
[27] 網路資料︰ SpineView。2014。取自http://www.spineview.com/degenerative_disc.php
[28] 網路資料︰鮑卓倫常見脊椎疾病。2013,取自http://ispinecare.com/index.html
[29] 網路資料︰Spinal Stenosis Overview。2011,取自http://www.spinepainbegone.com/spinal-stenosis.aspx
[30] 網路資料︰華人脊椎線上。2014,取自http://www.spine-online.com.tw/article.php?act=sick&id=5。
[31] Hibbs RH. An operation for progressive spinal deformities. New York Medical Journal 1911;93:1013-6.
[32] 網路資料︰Spine-Health。2013,取自http://www.spine-health.com。
[33] 陳虹亞,「非融合式脊椎動態穩定系統之生醫力學效應研究」,國立勤益科技大學,碩士論文,民國101年7 月。
[34] 王栢村,電腦輔助工程分析之實務與應用,全華科技圖書股份有限公司,2003。
[35] 李輝煌,田口方法:品質設計的原理與實務,高立圖書有限公司,2008。
[36] 蘇朝墩,品質工程,中華民國品質學會,2002。
[37] Person K. On lines and planes of closest fit to systems of points in spaces. Philosophical Magazine 1901;2:559-72.
[38] Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 1933;24:417-441, 498-520.
[39] 鄧振源,計畫評估:方法與應用,海洋大學運籌規劃與管理研究中心,2002。
[40] Guilhem Denozière,「Numerical modeling of a ligamentous lumbar motion segment」,Georgia Institute of Technology, M.S. dissertation,2004.
[41] Jahng TA, Kim YE, Moon KY. Comparison of the biomechanical effect of pedicle-based dynamic stabilization: a study using finite element analysis. The Spine Journal 2013;13:85-94.
[42] Tsuang YH, Chiang YF, Hung CY, et al. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation - A finite element study. Medical Engineering & Physics 2009;31:565-70.
[43] 莊文賢,「腰椎非線性有限元素分析之等效比較方法研究與應用」,國立中央大學,碩士論文,民國102年6月。
[44] 鄭筱瑾,「植入擴張型椎間融合器之鄰近椎體應力分析」,國立陽明大學,碩士論文,民國98年8月。
[45] Polikeit A, Ferguson SJ, Nolte LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: Finite element analysis. European Spine Journal 2003;12:413-20.
[46] Galbusera F, Schmidt H, Wilke HJ. Lumbar interbody fusion: A parametric investigation of a novel cage design with and without posterior instrumentation. European Spine Journal 2012;21:455-62.
[47] Kiapour A, Kiapour MA, Kodigudla M, et al. A biomechanical FE study of subsidence and migration tendencies in stand - alone fusion procedures - comparison of an in situ expandable device with a rigid device. Journal of Spine 2012; 1:1-5.
[48] Goel VK, Kim YE, Lim TH, et al. An analytical investigation of the mechanics of spinal instrumentation . Spine 1988;13:1003-11.
[49] Zhanga QH, Zhoua YL, Petitb D, et al. Evaluation of load transfer characteristics of a dynamic stabilization device on disc loading under compression. Medical Engineering & Physics 2009;31:533-8.