| 研究生: |
宋榮邦 Song Rongbang |
|---|---|
| 論文名稱: |
應用功率結合變壓器技術於功率放大器暨寬頻E類功率放大器之研製 The Implementations on Power Amplifier Using Power-Combining Transformer Techniqueand Broadband Class E Power Amplifiers |
| 指導教授: |
邱煥凱
Hwann-Kaeo Chiou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 寬頻 、功率結合變壓器 、功率放大器 |
| 外文關鍵詞: | Power Amplifier, Power-Combining Transformer, Broadband |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文在設計上分為兩部份,第一部份是以CMOS製程實現全積體化功率放大器為目標,使用功率結合變壓器技術達到大功率輸出之功率放大器。第二部份則以設計兩個寬頻E類功率放大器為目標,第一個電路為以CMOS製程實現應用電抗補償網路與負電容補償之寬頻E類功率放大器,第二個電路是以pHEMT製程實現應用雙諧振電抗補償網路之寬頻E類功率放大器。
各電路特性量測如下:第一部份以CMOS製程實現功率結合變壓器技術之功率放大器的電路,增益量測為14.3 dB,1-dB增益壓縮點輸出功率為20.2 dBm,飽和輸出功率為25.3 dBm,功率增進效率為24.2 %。而在第二部份,第一個是以CMOS製程實現應用電抗補償網路與負電容補償之寬頻E類功率放大器的電路,經量測結果顯示在1.6 - 3.4 GHz範圍內由小到高為,功率增益為8.9 - 12.5 dB,功率增進效率為14.4 - 33.7 %,1-dB增益壓縮點輸出功率為14.8 - 18.3 dBm,飽和輸出功率為18.4 - 22.5 dBm;第二個是以pHEMT製程實現應用雙諧振電抗補償網路之寬頻E類功率放大器的電路,量測結果顯示在4.5 - 6 GHz範圍內由小到高的結果為,功率增益為9.7 - 13.3 dB,功率增進效率為37.2 - 50.8 %,1-dB增益壓縮點輸出功率為17 - 19.1 dBm,飽和輸出功率為18.5 - 20.8 dBm。
This thesis studies two categories of power amplifiers which are fully integrated silicon-based power amplifiers using power-combing transformer technique and broadband Class-E power amplifiers. Two Class-E amplifiers were studied in this thesis. The first CMOS broadband Class-E power amplifier was designed by using a negative capacitance to compensate the reactance at the output. The second pHEMT broadband Class-E power amplifier was fulfilled by using dual resonant reactance compensation technique.
The measured results are summarized as follow, the CMOS power amplifier using power-combing transformer technique achieves a power gain of 14.3 dB, an output power at 1-dB gain compression point (P1dB) of 20.2 dBm, a saturation output power (Psat) of 25.3 dBm and a power-added efficiency (PAE) of 24.2 %. The CMOS broadband Class-E power amplifier using negative capacitance compensation technique achieves a bandwidth of 1.6 - 3.4 GHz, a power gain of 8.9 to 12.5 dB, a P1dB of 14.8 to 18.3 dBm, a Psat of 18.4 to 22.5 dBm and a PAE of 14.4 to 33.7 %. The pHEMT broadband Class-E power amplifier achieves a bandwidth of 4.5 - 6 GHz, a power gain of 9.7 to 13.3 dB, a P1dB of 17 to 19.1 dBm, a Psat of 18.5 to 20.8 dBm and a PAE of 37.2 to 50.8 %.
[1] I. Aoki, S. Kee, D. B. Rutledge and A. Hajimiri, “Distributed active transformer: A new power combining and impedance transformation technique,” Microwave Theory and Techniques,IEEE Transactions on, vol. 50, no. 1, January 2002, pp. 316–331.
[2] P. Haldi et al., “A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 5, May 2008, pp. 1054–1063.
[3] O. Lee, J. Han, K. Hwan An, D.H. Lee, K.-S. Lee, S. Hong; C.-H. Lee, “A Charging Acceleration Technique for Highly Efficient Cascode Class-E CMOS Power Amplifiers,” Solid-State Circuits, IEEE Journal of , vol.45, no.10, Oct. 2010, pp.2184-2197.
[4] J.R. Long, “Monolithic transformers for silicon RF IC design,” Solid-State Circuits, IEEE Journal of , vol.35, no.9, Sep 2000, pp.1368-1382.
[5] G. Liu, “Fully Integrated CMOS Power Amplifier,” EECS Department, University of California, Berkeley, 2006.
[6] T. Sowlati, D.M.W. Leenaerts, “A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier,” Solid-State Circuits, IEEE Journal of , vol.38, no.8, Aug. 2003, pp. 1318- 1324.
[7] K. Jongchan, A. Hajimiri, K. Bumman, “A single-chip linear CMOS power amplifier for 2.4 GHz WLAN,” Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International , vol., no., 6-9 Feb. 2006, pp.761-769.
60
[8] G. Liu, P. Haldi, T.-J. K. Liu, A.M. Niknejad, “Fully Integrated CMOS Power Amplifier With Efficiency Enhancement at Power Back-Off, ” Solid-State Circuits, IEEE Journal of , vol.43, no.3, March 2008, pp.600-609.
[9] N. O. Sokal and A. D. Sokal, “Class-E-A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. SC-10, no. 3, Jun. 1975, pp. 168–176.
[10] N. Kumar, C. Prakash, A. Grebennikov, and A. Mediano, “High-efficiency broadband parallel-circuit Class E RF power amplifier with reactance compensation technique,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, Mar. 2008, pp. 604–612.
[11] A. Grebennikov, RF and Microwave Power Amplifier Design. McGraw-Hill, 2005.
[12] A. Grebennikov, “Simple design equations for broadband class E power amplifiers with reactance compensation, ” Microwave Symposium Digest, 2001 IEEE MTT-S International , vol.3, no., 2001, pp.2143-2146 vol.3.
[13] A. Grebennikov and H. Jaeger, “Class E with parallel circuit-A new challenge for high-efficiency RF and microwave power amplifiers,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, Jun. 2002, pp. 1627–1630.
[14] A. Mazzanti, L. Larcher, R. Brama, and F. Svelto, “Analysis of reliability and power efficiency in cascode Class-E PAs,” IEEE J. Solid-State Circuits, vol. 41, no. 5, May 2006, pp. 1222–1229.
[15] C.-Y. Chiu, Ismail M. , “A fully integrated multi-standard power amplifier in 0.18 um CMOS for IEEE 802.11 a/b/g WLANs, ” Circuits and Systems, 2005. 48th Midwest Symposium on , vol.2, no. 7-10,Aug. 2005, pp.1111-1114.
61
[16] P.-C. Huang, K.-Y. Lin, H. Wang, “A 4–17 GHz Darlington Cascode Broadband Medium Power Amplifier in 0.18-um CMOS Technology, ” Microwave and Wireless Components Letters, IEEE , vol.20, no.1, Jan. 2010, pp.43-45.
[17] C. Lu, A.-V.H. Pham, M. Shaw, C. Saint, “Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation, ” Microwave Theory and Techniques, IEEE Transactions on , vol.55, no.11, Nov. 2007, pp.2320-2328.
[18] C.-H. Lin, H.-Y. Chang, “A High Efficiency Broadband Class-E Power Amplifier Using a Reactance Compensation Technique, ” Microwave and Wireless Components Letters, IEEE , vol.20, no.9, Sept. 2010, pp.507-509.
[19] Y.-J.E. Chen, L.-Y. Yang, W.-C. Yeh, “An Integrated Wideband Power Amplifier for Cognitive Radio, ” Microwave Theory and Techniques, IEEE Transactions on , vol.55, no.10, Oct. 2007, pp.2053-2058.
[20] J.-W. Lee, L.F. Eastman, K.J. Webb, “A gallium-nitride push-pull microwave power amplifier, ” Microwave Theory and Techniques, IEEE Transactions on , vol.51, no.11, Nov. 2003, pp. 2243- 2249.
[21] Y. Song, S. Lee, E. Cho, J. Lee, S. Nam, “A CMOS Class-E Power Amplifier With Voltage Stress Relief and Enhanced Efficiency, ” Microwave Theory and Techniques, IEEE Transactions on , vol.58, no.2, Feb. 2010, pp.310-317.
[22] 邱煥凱,微波積體電路設計,2007.
[23] 呂紹良, “微波存取全球互通頻段變壓器耦合式功率放大器與電壓控制振盪器暨除頻器之研製,” 中央大學, 碩士論文, 2008.
[24] 陳建中, “使用功率結合變壓器功率放大器與反E類開關式功率放大器研製,” 中央大學, 碩士論文, 2009.
[25] 潘孟偉, “全積體整合矽製程E類功率放大器與Ka頻段pHEMT製程功率放大器研製,” 中央大學, 碩士論文, 2010.