跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉恩睿
En-Jui Liu
論文名稱: 快速退火生長高品質石墨烯
Growing the high quality graphene by rapid thermal annealing
指導教授: 郭倩丞
Chien-Cheng Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 71
中文關鍵詞: 石墨烯化學氣相沉積法快速熱退火類單晶結構
外文關鍵詞: graphene, chemical vapor deposition method, rapid thermal process, similar single-crystal structure
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯為近年受矚目的奈米材料,其具有優異的導電性、高穿透率還具有高強度的特性。現在製備石墨烯的做法有很多種類,其中以高溫的化學氣相沉積法最能生產出高品質石墨烯,但因為成本高、生長轉印時間久目前還無法工業量產,因此目前以縮短生長時間、大面積製程為現階段石墨烯科技重要的方向。
    本研究主要利用快速升溫系統(rapid thermal process, RTP),將石墨烯生長時間從數小時縮短至一小時內,使用銅箔作為基板(substrate),透過拉曼訊號、電性去分析比較生長時間以及甲烷及氫氣流量的影響,利用原子力顯微鏡、X光繞射分析儀檢測退火溫度的不同探討對銅箔表面形貌的變化。為能使銅箔快速趨近於類單晶結構,利用1080°C非常趨近於銅的熔點的特性,使用1080°C退火10分鐘、1000°C生長15分鐘、甲烷及氫氣流量分別為10及20 (sccm),製程時間為25分鐘,研究結果顯示石墨烯生長速度明顯比一般傳統退火方式還快,其電性為500~700 (Ω/□)、載子遷移率200~500(cm^2/Vs) ,拉曼 2D/G 比值大於1.5。


    Graphene, the one of nanomaterials, gets the most attention in recent years. It possesses excellent electrical conductivity, high transmittance, and high strength characteristics. There are many processes to produce graphene nowadays. Among these processes, the high-temperature chemical vapor deposition method is the best one to produce the high quality graphene. However, the process can not to be applied in the industry production yet since it needs a high cost and long transfer time. Therefore, the issues of shortening the growth time and large-scale manufacturing process are the major researching trend in the graphene technology.
    This study uses a rapid thermal process (RTP) system for shortening the graphene growth time from several hours to one hour by using a copper foil as the substrate and also applying Raman spectrum and sheet resistance to examine the effects of growth time and flow volumes of methane and hydrogen. This work also uses an atomic force microscope and X-ray diffraction analyzer to assess the changes of annealing temperature versus the copper foil surface. Considering the annealing temperature is set at 1080 ° C which is very close to the melting point of the copper, for fast transferring the copper foil surface to similar single-crystal structure, the parameters of manufacturing graphene are set as:1080 ° C annealing temperature for 10 minutes, the growth time for 15 minutes at 1000°C, the flow rate of methane gas and hydrogen at 10:20, and the processing time for 25 minutes. The experimental results show that the present graphene growth time significantly faster than that of using traditional annealing approach. The sheet resistance of graphene quality using present RTP system is 500~700 (Ω/□), and the carrier mobility rate is in the range of 200~500(cm^2/Vs).

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 論文架構 3 第二章 基礎理論與文獻回顧 4 2-1 石墨烯 4 2-2 透明導電膜 8 2-3 石墨烯為透明導電膜 8 2-4 石墨烯製備方法 10 2-4-1 機械剝離法 11 2-4-2 碳化矽磊晶法 11 2-4-3 氧化石墨烯還原法 12 2-4-4 化學氣相沉積法 13 2-5 金屬薄膜成長石墨烯 16 2-6 快速升溫製程石墨烯 21 第三章 實驗方法與儀器介紹 24 3-1 石墨烯之製程 24 3-1-1 化學氣相沉積法儀器介紹 24 3-1-2 成長石墨烯 26 3-1-3 石墨烯轉印步驟 27 3-2 分析儀器 28 3-2-1 原子力顯微鏡 29 3-2-2 拉曼光譜儀 29 3-2-3 光學顯微鏡 32 3-2-4 霍爾量測儀 . 33 第四章 結果與討論 34 4-1 生長氫氣甲烷流量比與成長時間關係 34 4-2 分析退火溫度對銅箔表面影響 40 4-3 檢測RTP 生長石墨烯品質 47 第五章 結論與未來工作 51 參考文獻 52

    [1] Geim, A.K., & Novoselov, K.S., The rise of graphene. Nature materials, 6(3), 183-191. (2007).
    [2] Graphene in Wikipedia.
    https://zh.wikipedia.org/zh-tw/%E7%9F%B3%E5%A2%A8%E7%83%AF
    [3]Bunch, J. S., Mechanical and electrical properties of graphene sheets (Doctoral dissertation, Faculty of the Graduate School, Cornell University). (2008).
    [4]Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. ,Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308-1308. (2008).
    [5]Bolotina, K. I., Sikes, K. J., Jiang, Z., Klimac, M., Fudenberga, G., Honec J., Kima, P., & Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9), 351-355. (2008).
    [6]Frank, I. W., Tanenbaum, D. M., Van der Zande, A. M., & McEuen, P. L., Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 25(6), 2558-2561. (2007).
    [7]Jo, G., Choe, M., Lee, S., Park, W., Kahng, Y. H., & Lee, T., The application of graphene as electrodes in electrical and optical devices.Nanotechnology, 23(11), 112001. (2012).
    [8]Bostwick, A., McChesney, J., Ohta, T., Rotenberg, E., Seyller, T., & Horn, K., Experimental studies of the electronic structure of graphene. Progress in Surface Science, 84(11), 380-413. (2009).
    [9]Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K., The electronic properties of graphene. Reviews of modern physics, 81(1), 109. (2009).
    [10]Geim,A.K., Graphene: status and prospects. science, 324(5934), 1530-1534. (2009).
    [11]Pollard, B., Growing graphene via chemical vapor eposition. Pomona College, Claremont. (2011).
    [12]Semenoff, G. W., Condensed-matter simulation of a three-dimensional anomaly. Physical Review Letters, 53(26), 2449. (1984).
    [13]林永昌, 呂俊頡, 鄭碩方, 邱博文, 石墨烯之電子能帶特性與其元件應用, in, Physics bimonthly, 2011.
    [14]Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C., Graphene photonics and optoelectronics. Nature photonics, 4(9), 611-622. (2010).
    [15]楊明輝, 透明導電膜, (2006).
    [16]楊明輝, 工業材料, 2001.
    [17]Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., ... & Ruoff, R. S., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters, 9(12), 4359-4363. (2009).
    [18]Bi, H., Huang, F., Liang, J., Xie, X., & Jiang, M., Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells. Advanced Materials,23(28), 3202-3206. (2011).
    [19]Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A., Electric field effect in atomically thin carbon films. science, 306(5696), 666-669. (2004).
    [20]De Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., ... & Potemski, M., Epitaxial graphene. Solid State Communications, 143(1), 92-100. (2007).
    [21]Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., & Dai, H., Highly conducting graphene sheets and Langmuir–Blodgett films. Nature nanotechnology, 3(9), 538-542. (2008).
    [22]Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S., Graphene and graphene oxide: synthesis, properties, and applications.Advanced materials, 22(35), 3906-3924. (2010).
    [23]Eda, G., Fanchini, G., & Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.Nature nanotechnology, 3(5), 270-274. (2008).
    [24]Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K., Large-area synthesis of high-quality and uniform graphene films on copper foils.Science, 324(5932), 1312-1314. (2009).
    Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., ... & Kim, Y. J., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 5(8), 574-578. (2010).
    [25]Ismach, A., Druzgalski, C., Penwell, S., Schwartzberg, A., Zheng, M., Javey, A., ... & Zhang, Y., Direct chemical vapor deposition of graphene on dielectric surfaces. Nano letters, 10(5), 1542-1548. (2010).
    [26]Lee, Y. H., & Lee, J. H., Scalable growth of free-standing graphene wafers with copper (Cu) catalyst on SiO2/Si substrate: Thermal conductivity of the wafers. Applied Physics Letters, 96(8), 083101. (2010).
    [27]Reina, A., Thiele, S., Jia, X., Bhaviripudi, S., Dresselhaus, M. S., Schaefer, J. A., & Kong, J., Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Research,2(6), 509-516. (2009).
    [28]Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., ... & Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,457(7230), 706-710.(2009)
    [29]Sutter, E., Albrecht, P., & Sutter, P., Graphene growth on polycrystalline Ru thin films. Applied Physics Letters, 95(13), 133109. (2009).
    [30]Kang, B. J., Mun, J. H., Hwang, C. Y., & Cho, B. J., Monolayer graphene growth on sputtered thin film platinum. Journal of Applied Physics,106(10), 104309. (2009).
    [31]Riikonen, J., Kim, W., Li, C., Svensk, O., Arpiainen, S., Kainlauri, M., & Lipsanen, H., Photo-thermal chemical vapor deposition of graphene on copper. Carbon, 62, 43-50. (2013).
    [32]Kim, S. M., Kim, J. H., Kim, K. S., Hwangbo, Y., Yoon, J. H., Lee, E. K., ... & Lee, S. M., Synthesis of CVD-graphene on rapidly heated copper foils.Nanoscale, 6(9), 4728-4734.(2014).
    [33]Su, C. Y., Lu, A. Y., Wu, C. Y., Li, Y. T., Liu, K. K., Zhang, W., ... & Li, L. J., Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano letters, 11(9), 3612-3616. (2011).
    [34]Kim, W., Riikonen, J., Arpiainen, S., Svensk, O., Li, C., & Lipsanen, H., Growth of CVD graphene on copper by rapid thermal processing. In MRS Proceedings (Vol. 1451, pp. 27-32). (2012).
    [35]Z. Yan, A.R. Barron, Characterization of graphene by raman spectroscopy, in http://cnx.org/content/m34667/latest/.
    [36]Blake, P., Hill, E. W., Neto, A. C., Novoselov, K. S., Jiang, D., Yang, R., ... & Geim, A. K., Making graphene visible. Applied Physics Letters, 91(6), 063124. (2007).
    [37]Mehdipour, H., & Ostrikov, K., Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure. ACS nano,6(11), 10276-10286. (2012).
    [38]Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., & Smirnov, S., Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS nano, 5(7), 6069-6076. (2011).

    QR CODE
    :::