| 研究生: |
李羿葦 Yi-Wei Lee |
|---|---|
| 論文名稱: |
不同排水速度/滑移速度條件下高嶺土 之摩擦特性探討 Relationship of frictional characteristics of kaolin clay in different slip rates and drainage conditions |
| 指導教授: |
董家鈞
Jia-Jyun Dong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 超額孔隙壓力 、滑移速度 、排水條件 、摩擦係數 、高嶺土 |
| 外文關鍵詞: | Excess pore pressure, Slip rate, drainage condition, friction coefficient, kaolin clay |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大規模山崩常造成生命財產之重大損失,而滑移面摩擦特性受滑移速度、圍岩排水條件和滑移距離等因素影響,因此,瞭解滑移面摩擦特性與上述因素之關聯性有助於山崩防災研究。本研究探討滑移速度和排水條件對高嶺土摩擦係數之影響,試驗試體浸泡於水中一天,使含水量趨近於飽和,以1 MPa之正向應力進行試體壓密,旋剪試驗全程處於浸水環境,於單、雙向與徑向排水條件下以滑移速度10-7~1 m/s,量測高嶺土之視摩擦係數。徑向排水條件結果顯示,當滑移速度10-6~10-2 m/s之試驗於200~10秒和滑移速度1 m/s之試驗於0.4 秒時,視摩擦係數先降至低谷值(0.03~0.22)再漸增,並且低於其他兩排水條件(相同滑移距離)之視摩擦係數(0.25~0.58),故此現象應為激發超額孔隙壓力所引致。當滑移速度10-7~10-1 m/s時,三種排水條件試驗皆呈現位移強化行為;當滑移速度為1 m/s時則皆為位移弱化,且皆出現上述之低谷值。在從10-6到10-2 m/s下,所有實驗之穩態摩擦係數均隨滑移速度上升而上升。計算徑向排水和乾試體條件試驗過程中之溫度變化,於滑移速度1 m/s試驗,徑向排水試驗最終溫度72度,乾試體試驗最終溫度188度,於滑移速度10-1 m/s試驗,實驗最終溫度約56~65度,於滑移速度10-2 m/s試驗,實驗中溫度變化不超過8度。由上述結果與前人研究可以判斷超額孔隙壓力激發機制有:(1)孔隙體積壓縮而激發。(2)溫度上升使孔隙流體膨脹而激發。(3)水汽化而激發。因此,超額孔隙壓力之累積同時與不同排水條件和滑移速度有關,結果指出邊坡滑動面排水條件將影響滑移面是否加速,若邊坡滑動面排水良好,能快速將超額孔隙壓力排出,而滑移面強度將逐漸增強而使滑移趨緩;此外,若超額孔隙壓力生成速度快過消散速度,則可能促成緩慢滑移(潛移)邊坡加速而轉變成遠距快速滑移。
Large landslide usually causes loss of life and property. The slip rate, drainage condition and shear displacement control the frictional characteristics of slip zone. Moreover, the effective stress of slip zone decreases with increasing pore pressure. The strength of slip zone is controlled by the slip rate and pore pressure. To know the relation between the frictional characteristics and previous parameters contribute to research of landslide prevention. This study aims at exploring the influence of slip rates and drainage conditions on the strength of kaolin clay. A low to high velocity rotary shear apparatus was used to measure the apparent friction coefficient of wet kaolin clay under a normal stress of 1 MPa and slip rate ranged from 10-7 to 1 m/s. The drainage conditions are controlled by alloy holders including radial, single and double drainage conditions. The experimental results show: (a) the steady-state friction coefficients at radial drainage condition under slip rates from 10-7 to10-1 m/s (slip-strengthening behavior) ranged from 0.25 to 0.58 and under 1 m/s of slip rate (slip-weakening behavior) is 0.08 and; (b) the steady-state friction coefficients single drainage condition under slip rates from 10-6 to10-1 m/s (slip-strengthening behavior) ranged from 0.30 to 0.4 and under 1 m/s of slip rate (slip-weakening behavior) is 0.18; (c) the steady-state friction coefficients double drainage condition under slip rates from 10-6 to10-1 m/s (slip-strengthening behavior) ranged from 0.18 to 0.58. Besides, the friction coefficient at radial drainage condition under slip rates from 10-6 to10-2 m/s dropped rapidly (before slip displacements < 2 m) after first peak and increased again after the drop, which represents the excess pore pressure was induced and dissipated at the initial stage, especially. Calculate the temperature change during the course of the radial drainage and dry test conditions. At the slip rate of 1 m/s test, the test temperature of the radial drainage test specimen is up to 72 degrees; the test temperature of the dry test specimen is even up to 188 degrees. At the slip rate of 10-1 m/s test, the final temperature of the experiment range from 56 to 65 degrees. At slip rate of 10-2 m/s test, the temperature change in the experiment does not exceed 8 degrees. According to the above results and previous studies can determine the excess pore pressure generation mechanism: (1) Pore volume compression and pore pressure generation. (2) The rise in temperature leads to pore water generation. (3) Water vaporization leads to pore water generation. The results could be applied to the study of large landslide from creeping tuning into catastrophic failure. Therefore, the accumulation of excess pore pressure is related to different drainage conditions and slip rates. It is pointed out that the drainage condition of the sliding surface will affect the acceleration of the sliding surface. If the sliding surface is well drained, which can quickly dissipate excess pore pressure, then the strength of slip surface will increase and the slip will be slowed down. In addition, if the generated rate of excess pore pressure is faster than the dissipated rate of excess pore pressure, it may cause the creep slip to become a rapid slip.
1. 余威論,「速度-位移相關摩擦係數與巨型山崩運動特性」,國立中央大學應用地質所,碩士論文,2009。
2. 吳文傑,「應力歷史相關之沉積岩孔隙率模型」,國立中央大學應用地質所,碩士論文,2009。
3. 陳文山,台灣地質概論,中華民國地質學會,2016。
4. 林俐玲、黃振全、顏呈仰、黃貞凱、鄭裕適和張益通,「深層岩體潛移邊坡滑動行為研究-以廬山地滑為例」,2009。
5. 許暢軒,「地震誘發遽變式山崩之臨界位移」,國立中央大學應用地質所,碩士論文,2016。
6. 劉學樺,「由斷層泥旋剪試驗推估基底滑脫面於不同深度與滑移速度條件下之摩擦特性」,國立中央大學應用地質所,碩士論文,2013。
7. Alonso, E.E., Zervos, A., Pinyol, N.M., 2016. Thermo-poro-mechanical analysis of landslides: From creeping behavior to catastrophic failure. Geotechnique, 66(3), 202-219.
8. Bar-Sinai, Y., Spatschek, R., Brener, E.A., Bouchbinder, E., 2014. On the velocity-strengthening behavior of dry friction. Journal of Geophysical Research: Solid Earth, 119, 1738-1748.
9. Bhat, D.R., Bhandari, N.P., Yatabe, R., 2013d. Method of residual-state creep test to understand the creeping behaviour of landslide soils. Landslide Science and Practice, 2, 635-642.
10. Boyer, R., Welsh, G., Collings, E.W., 1994. Materials Properties Handbook - Titanium Alloys, ASM International, Materials Park, OH.
11. Brantut, N., Schubnel, A., Rouzaud, J.-N., Brunet, F., Shimamoto, T., 2008. High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research, 113, B10401
12. Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and permeability structure. Geology, 24, 1125-1128.
13. Chen, J., Niemeijer, A., Yao, L., Ma, S., 2017. Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophysical Research Letters, doi: 10.1002/2016GL071932
14. Chigira, M., 1992. Long-term gravitational deformation of rock by mass rock creep. Engineering Geology, 32(3), 157-184.
15. De Blasio, F.V., Elverhøi, A., 2008. A model for frictional melt production beneath large rock avalanches. Journal of Geophysical Research. 113, F02014.
16. De Paola, N., Holdsworth, R.E., Viti, C., Collettini, C., Bullock, R., 2015. Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation? Earth and Planetary Science Letters, 431, 48-58.
17. Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during earthquakes. Nature, 471, 494-497.
18. Ferri, F., Di Toro, G., Hirose, T., Shimamoto, T., 2010. Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges. Terra Nova, 22(5), 347-353.
19. Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M., de Rossi, N., 2011. Low-to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 116, B09208.
20. Fleming, R.W., Johnson, A.M., 1975. Rates of seasonal creep of silty clay soil. Quarterly Journal of Engineering Geology, 8, 1-29.
21. French, M.E., Kitajima, H., Chester, J.S., Chester, F.M., Hirose, T., 2014. Displacement and dynamic weakening processes in smectite-rich gouge from the Central Deforming Zone of the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 119, 1777-1802.
22. Goren, L., Aharonov, E., 2007. Long runout landslides: The role of frictional heating and hydraulic diffusivity. Geophysical Research Letters, 34, L07301.
23. Goren, L., Aharonov, E., 2009. On the stability of landslides: A thermo-poro-elastic approach. Earth and Planetary Science Letters, 277, 365-372.
24. Hirose, T., Shimamoto, T., 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research, 110, B05202.
25. Iverson, R.M., 2000. Landslide triggering by rain infiltration. Journal of Geophysical Research, 110, F02015.
26. Iverson, R.M., 2005. Regulation of landslide motion by dilatancy and pore pressure feedback. Journal of Geophysical Research, 110, F02015.
27. Kreith, F., Manglik, R.M., Bohn, M.S., 1986. Principles of heat transfer. Harper and Row, New York.
28. Kim, J.W., Ree, J.H., Han, R., Shimamoto, T., 2010. Experimental evidence for the simultaneous formation of pseudotachylyte and mylonite in the brittle regime. Geology, 38, 1143-1146
29. Lachenbruch, A.H., 1980. Frictional heating, fluid pressure, and the resistance to fault motion. Journal of Geophysical Research, 85, 6097-6122.
30. Michot, A., Smith, D.S., Degot, S., Gault, C., 2008. Thermal conductivity and specific heat of kaolinite: evolution with thermal treatment, Journal of the European Ceramic Society, 28, 2639-2644.
31. Miyamoto, Y., Shimamoto, T., Togo, T., Dong, J.J., Lee, C.T., 2009. Dynamic weakening of bedding- parallel fault gouge as a possible mechanism for catastrophic Tsaoling landslide induced by 1999 Chi-Chi earthquake. Proceedings of The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 398-401.
32. Mizoguchi, K., Hirose, T. Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, L01308.
33. Moore, D.E., Lockner, D.A., 2007. Friction of the smectite clay montmorillonite: A review and interpretation of data, in The Seismogenic Zone of Subduction Thrust Faults. Columbia Univ. Press, New York.
34. Nemcok, A., 1972. Classification of landslides and other mass movements. Rock mechanics, 4(2), 71-78.
35. Niemeijer, A., Di Toro, G., Nielsen, S., Di Felice, F., 2011. Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration, and sliding velocity. Journal of Geophysical Research: Solid Earth, 116, B07404.
36. Noda, H., Kanagawa, K., Hirose, T., Inoue, A., 2011. Frictional experiments of dolerite at intermediate slip rates with controlled temperature: Rate weakening or temperature weakening? Journal of Geophysical Research, 116, B07306
37. Oohashi, K., Hirose, T., Takahashi, M., Tanikawa, W., 2015. Dynamic weakening of smectite-bearing faults at intermediate velocities: implications for subduction zone earthquakes. Journal of Geophysical Research, 120, 1572-1586.
38. Rice, J.R., 2006. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research, 111, B05311.
39. Richard, A.R. and Bruce, S.H., 1991. Heat capacities of kaolinite from 7 to 380 k and of dmso-intercalated kaolinite from 20 to 310 k. the entropy of kaolinite Al2Si2O5(OH)4. Clays and Clay Minerals, 39(4), 362-368.
40. Sassa, K., Fukuoka, H., Wang, G., Ishikawa, N., 2004. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics. Landslides, 1, 7-19.
41. Sawai, M., Hirose, T., Kameda, J., 2014. Frictional properties of incoming pelagic sediments at the Japan Trench: Implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake. Earth Planets Space, 66(1), 65.
42. Skempton, A.W., Henkel, D.J., 1960. Field observations on pore pressures in the London Clay. Conference on Pore Pressure and Suction in soils. Butterworths, 81-84.
43. Skempton, A.W., 1985. Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique, 35(1), 3-18.
44. Ter-Stepanian, G.I., 1966. Types of depth creep of slopes in rock masses: Proc. 1st Congr. Int. Soc. Rock Mechanics. Lisbon., 2, 157-160.
45. Terzaghi, K., 1925. Erdbaumechnik auf Bodenphysikalischer. Groundlage, Vienna: Franz Deuticke.
46. Tika, T.E., Hutchinson, J.N., 1999. Ring shear tests on soil from the Vaiont landslide slip surface. Geotechnique, 49, 59-74.
47. Togo, T., Ma, S.L., Hirose, T., 2011. High-velocity friction of faults: A review and implication for landslide studies. The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 205-216.
48. Tsutsumi, A., Shimamoto, T., 1996. Frictional properties of monzodiorite and gabbro during seismogenic fault motion. Journal Geological Society of Japan, 102(3), 240-248.
49. Varnes, D.J., 1978. Slope movement types and processes: In Landslides, Analysis and Control. Nat. Acad. Sci. Spec. Rep., 176, 11-35.
50. Veveakis, E., Vardoulakis, I., Di Toro, G., 2007. Thermoporomechanics of creeping landslides: the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 112, F03026.
51. Wada, J.I., Kanagawa, K., Kitajima, H., Takahashi, M., Inoue, A., Hirose, T., Ando, J.I., Noda, H., 2016. Frictional strength of ground dolerite gouge at a wide range of slip rates. Journal of Geophysical Research: Solid Earth, 121, 2961-2979.
52. Wang, F., Zhang, Y., Huo, Z., Peng, X., Wang, S., Yamasaki, S., 2008a. Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges Dam reservoir, China. Landslides, 5 (4), 379-386.
53. Wibberley, C.A.J., Shimamoto, T., 2005. Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436, 689-692.
54. Yang, C.M., Yu, W.L., Dong, J.J., Kuo, C.Y., Shimamoto, T., Lee, C.T., Togo, T., Miyamoto, Y., 2014. Initiation, movement, and run-out of the giant Tsaoling landslide What can we learn from a simple rigid block model and a velocity-displacement dependent friction law? Engineering Geology, 182, 158-181.
55. Yao, L., Ma, S., Platt, J.D., Niemeijer, A.R., Shimamoto, T., 2016. The crucial role of temperature in high-velocity weakening of faults: Experiments on gouge using host blocks with different thermal conductivities. Geology, 44(1), 63-66
56. Zhang, F.Y., Wang, G.H., Kamai, T., Chen, W., Zhang, D., Yang, J., 2013. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution. Engineering Geology, 155, 69-79.
57. Wang, Y.F., Dong, J.J., Cheng, Q.G., 2017. Velocity-dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility? Journal of Geophysical Research: Solid Earth, 122, 1648-1676.