跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐嘉駿
Jia-Jiun Shiu
論文名稱: 長鏈被動粒子浸於主動群泳菌落的結構動力學
Configuration dynamics of long passive filaments immersed in swarming bacteria bath
指導教授: 田溶根
Yonggun Jun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 63
中文關鍵詞: 群泳細緻平衡的破壞
外文關鍵詞: Swarming, Broken detailed balance
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 群泳被認為是主動運動,意即微生物於表面上進行集體快速噴射或漩渦運動。
    先前研究已經聚焦於群泳微生物所展現的非平衡物理之基本物理原則 [1, 2]。
    然而,由於使用球形粒子作為追蹤物的極限,發生在高維空間尺度的群泳動力學仍然所知甚少。
    在本論文中,我們研究長鏈被動追蹤物(DH5\textalpha,極低活動度的長鏈細菌)在群泳菌群(\emph{Vibrio alginolyticus})中的動力學,其中,群泳菌群作為非平衡力的來源。此方法類似於近年使用奈米碳管探索多維細胞骨架的運動模式 [3]。
    首先,我們由追蹤物的中心點和端點的均方根位移去分析並比較不同長度追蹤物之間的不同。
    其次,我們透過分解追蹤物的形狀為簡振模的強度並轉化為二維的構形(模態對)相空間,從中觀察其形狀變化。
    藉由計算相空間的機率通量,我們從通量流場發現通量環在短時間或單一軌跡出現,代表著其細緻平衡的破壞,然而在經過長時間平均後,通量環便無法觀測到。我們結合其他統計結果並提出此現象發生的原因。


    Swarming refers to a collective rapid jet flow or swirling motion of microorganisms on a surface, which is considered active motion.
    Previous studies have focused on the underlying physical principles of the non-equilibrium dynamics generated by swarming microorganisms [1, 2].
    However, the swarming dynamics occurring on multiple spatiotemporal scales are still poorly understood due to the limited capability of the employed spherical tracers.
    Here, we investigate the dynamics of a long passive filament (DH5\textalpha, a long bacteria with engineered immotile flagella) in a bacterial swarming bath (\emph{Vibrio alginolyticus}), which serves as the source of non-equilibrium forces.
    This method is similar to a recent demonstration that uncovered the multiscale cytoskeletal dynamics of a cell using carbon nanotube [3].
    We first obtain the mean-squared displacement of end-points and middle points of cells to compare the difference results in three length scales of tracers.
    Secondly, we analyze the filament shapes at each moment as follows.
    Each configuration is decomposed into several normal mode amplitudes.
    Then, in the configurational (mode-pair) phase space, we generate the probability flux between mode-pairs to obtain the current field.
    We find flux loops that indicate broken detailed balance for single and short-time trajectories, while no obvious loops for long-time averaged ones.

    摘要 i Abstract iii Acknowledgements v 1 Introduction 1 2 Background and Theories 3 2.1 Swarming mobility . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Free-end flexible filaments in active matter . . . . . . . . . . . . 6 2.3 Normal modes of free-end flexible filaments in a dense medium . 7 2.4 Mode-pair phase space and broken detailed balance . . . . . . . 11 3 Experiment method 15 3.1 Swarm plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1 Vibrio alginolyticus, YM19 . . . . . . . . . . . . . . . . . 15 3.1.2 Escherichia coli, DH5α . . . . . . . . . . . . . . . . . . . 16 3.1.3 Preparing the swarm plate . . . . . . . . . . . . . . . . . 16 3.2 Observation and analysis . . . . . . . . . . . . . . . . . . . . . . 18 3.2.1 Principle for phase-contrast microscopy . . . . . . . . . . 18 3.2.2 Experiment setup and alignments . . . . . . . . . . . . . 19 3.2.3 Image process and objects tracking . . . . . . . . . . . . 22 3.2.4 Decomposition of filament configuration . . . . . . . . . 23 4 Results 25 4.1 Filaments in YM19 bath . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Diffusion of filaments in an active bath . . . . . . . . . . . . . . 26 4.3 Configuration of filaments . . . . . . . . . . . . . . . . . . . . . 31 4.4 Probability flux analysis of passive filaments . . . . . . . . . . . 35 5 Conclusion and Outlook 39 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Outlook: The flexible filaments in B. subtilis bath . . . . . . . . 40 Bibliography 43

    1. Chai, Y.-J. Experimental study of statistical properties of passive tracers in swarming bacterial bath (2019).
    2. Lin, Z.-T. Dynamics of elliptical particles in swarming bacterial bath (2022).
    3. Bacanu, A., Pelletier, J. F., Jung, Y. & Fakhri, N. Inferring scale-dependent non-equilibrium activity using carbon nanotubes. Nature Nanotechnology 18, 905–911 (2023).
    4. Gladrow, J., Fakhri, N., MacKintosh, F. C., Schmidt, C. F. & Broedersz, C. P. Broken Detailed Balance of Filament Dynamics in Active Networks. Phys. Rev. Lett. 116, 248301. https://link.aps.org/doi/10.1103/PhysRevLett.116.248301 (24 2016).
    5. Ma, S., Zhang, R. & Yuan, J. Observation of broken detailed balance in polymorphic transformation of bacterial flagellar filament. Biophysical Journal 121, 2345–2352. issn: 0006-3495. https://www.sciencedirect.com/science/article/pii/S0006349522004155 (2022).
    6. Battle, C. et al. Broken detailed balance at mesoscopic scales in active biological systems. Science 352, 604–607. https://www.science.org/doi/abs/10.1126/science.aac8167 (2016).
    7. Lynn, C. W., Cornblath, E. J., Papadopoulos, L., Bertolero, M. A. & Bas-sett, D. S. Broken detailed balance and entropy production in the human brain. Proceedings of the National Academy of Sciences 118, e2109889118.
    https://www.pnas.org/doi/abs/10.1073/pnas.2109889118 (2021).
    8. Zhang, H. P., Be’er, A., Florin, E.-L. & Swinney, H. L. Collective motion and density fluctuations in bacterial colonies. Proceedings of the National Academy of Sciences 107, 13626–13630. https://www.pnas.org/doi/abs/10.1073/pnas.1001651107 (2010).
    9. Ariel, G. et al. Swarming bacteria migrate by Lévy Walk. Nature communications 6, 8396 (2015).
    10. Narayan, V., Ramaswamy, S. & Menon, N. Long-Lived Giant Number Fluctuations in a Swarming Granular Nematic. Science 317, 105–108. https://www.science.org/doi/abs/10.1126/science.1140414 (2007).
    11. Deseigne, J., Dauchot, O. & Chaté, H. Collective Motion of Vibrated Polar Disks. Phys. Rev. Lett. 105, 098001. https://link.aps.org/doi/10.1103/PhysRevLett.105.098001 (9 2010).
    12. Dey, S., Das, D. & Rajesh, R. Spatial Structures and Giant Number Fluctuations in Models of Active Matter. Phys. Rev. Lett. 108, 238001. https://link.aps.org/doi/10.1103/PhysRevLett.108.238001 (23 2012).
    13. Toner, J. Giant number fluctuations in dry active polar fluids: A shocking analogy with lightning rods. The Journal of Chemical Physics 150, 154120. issn: 0021-9606. https://doi.org/10.1063/1.5081742 (2019).
    14. Böttcher, T., Elliott, H. L. & Clardy, J. Dynamics of Snake-like Swarming Behavior of Vibrio alginolyticus. Biophysical Journal 110, 981–992. issn:0006-3495. https://www.sciencedirect.com/science/article/pii/
    S0006349516000448 (2016).
    15. Chiu, Y. Impact of individual variants in cell lengths on the dynamics of bacterial swarming (2024).
    16. Kaiser, A. & Löwen, H. Unusual swelling of a polymer in a bacterial bath. The Journal of Chemical Physics 141, 044903. issn: 0021-9606. https://doi.org/10.1063/1.4891095 (2014).
    17. Jaeoh Shin Andrey G Cherstvy, W. K. K. & Metzler, R. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles. New Journal of Physics 17 (2015).
    18. Nikola, N. et al. Active Particles with Soft and Curved Walls: Equation of State, Ratchets, and Instabilities. Phys. Rev. Lett. 117, 098001. https://link.aps.org/doi/10.1103/PhysRevLett.117.098001 (9 2016).
    19. Kremer, K. & Grest, G. S. Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation. The Journal of Chemical Physics 92, 5057–5086. issn: 0021-9606 (1990).
    20. Aragon, S. R. & Pecora, R. Dynamics of wormlike chains. Macromolecules 18, 1868–1875. https://doi.org/10.1021/ma00152a014 (1985).
    21. Hinczewski, M., Schlagberger, X., Rubinstein, M., Krichevsky, O. & Netz, R. R. End-Monomer Dynamics in Semiflexible Polymers. Macromolecules 42, 860–875 (2009).
    22. Soda, K. Dynamics of Stiff Chains. I. Equation of Motion. Journal of the Physical Society of Japan 35, 866–870 (1973).
    23. López-Blanco, J. R., Miyashita, O., Tama, F. & Chacón, P. in Encyclopedia of Life Sciences (John Wiley & Sons, Ltd, 2014). isbn: 9780470015902. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0020204.pub2.
    24. Bauer JA Pavlović J, B.-H. V. Normal Mode Analysis as a Routine Part of a Structural Investigation. Molecules 24 (2019).
    25. I, B., TR, L., LW, Y. & E, E. Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys 39 (2010).
    26. Golten, C. & Scheffers, W. Marine vibrios isolated from water along the dutch coast. Netherlands Journal of Sea Research 9, 351–364. issn: 0077-7579. https://www.sciencedirect.com/science/article/pii/0077757975900095 (1975).
    27. Atsumi, T et al. Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus. Journal of Bacteriology 178, 5024–5026.
    https://journals.asm.org/doi/abs/10.1128/jb.178.16.5024-5026.1996 (1996).
    28. De Boer, W. E., Golten, C. & Scheffers, W. Effects of some physical factors on flagellation and swarming of Vibrio alginolyticus. Netherlands Journal of Sea Research 9, 197–213. issn: 0077-7579. https://www.sciencedirect.com/science/article/pii/0077757975900150 (1975).
    29. I, K., Maekawa Y, A. T., M, H. & Y, I. Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources. J Bacteriol 177, 5158–60 (1995).
    30. Hanahan, D. Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166, 557–580. issn: 0022-2836. https://www.sciencedirect.com/science/article/pii/S0022283683802848 (1983).
    31. Novick, A. Growth of Bacteria. Annual Review of Microbiology 9, 97–110. https://doi.org/10.1146/annurev.mi.09.100155.000525 (1955).
    32. Zernicke, F. Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung. Zeitschrift für technische Physik 16, 454–457 (1935).
    33. Ruhnow, F., Zwicker, D. & Diez, S. Tracking Single Particles and Elongated Filaments with Nanometer Precision. Biophysical Journal 100, 2820-2828. issn: 0006-3495. https://www.sciencedirect.com/science/article/pii/S000634951100467X (2011).
    34. Mary, H. & Rueden, C. hadim/FilamentDetector: FilamentDetector-0.4.7 version FilamentDetector-0.4.7. 2019. https://doi.org/10.5281/zenodo.2544848.
    35. Eberly, D., Gardner R.and Morse, B., Pizer, S. & Scharlach, C. Ridges for image analysis. J Math Imaging Vis 4, 353–373 (1994).

    QR CODE
    :::