跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊芳玫
Fang-mai Yang
論文名稱: 由多醣體製備之氧化鋅其光催化效率之研究
Photocatalytic efficiency of zinc oxide prepared using natural polysaccharides
指導教授: 李俊福
Jiunn-Fwu Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 127
中文關鍵詞: 氧化鋅光催化天然多醣體
外文關鍵詞: natural polysaccharides, photocatalytic, zinc oxide
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光觸媒是一種利用光照射後可以產生自由基,以自由基攻擊目標
    污染物,再利用氧化還原方式達到降解污染物的催化劑。本研究主要探討利用不同多醣體製備的氧化鋅和市售觸媒,在不同的光催化條件下催化降解甲烯藍、結晶紫、剛果紅三種污染物,並進行其光催化效率比較。
    天然多醣體製備之氧化鋅係利用不同天然多醣體:海藻膠、幾丁
    聚醣、玉米澱粉所製備而成,經由光催化效率比較可以得知天然多醣體製備之氧化鋅和其:(a)配比高低無關,其中以3%-3%為最佳;(b)氧化鋅鍛燒溫度以450℃為最佳;(c)不同添加物,會產生不同的影響;(d)不同的多醣體,其光催化效果以海藻膠及玉米澱粉最好。對於光催化條件的選擇則循環水溫度以30℃最佳,而污染物初始濃度越低,光催化效果也越佳;觸媒劑量和酸鹼度有其最適值,實驗結果亦顯示光催化能力隨照射時間增長而下降。


    Photocatalysts are kind of catalyst that can be irradiated by light and generate free radicals, and this kind of radicals will attack target pollutants using redox method for degradation of pollutants. This study investigated the preparation of zinc oxide catalyst in different conditions using different polysaccharide and its efficiency of photocatalytic degradation of three kinds of pollutants such as methylene blue, crystal violet, and congo red.
    Zinc oxide was prepared using different natural polysaccharides such as alginate, chitosan, and corn starch. Comparison of the photocatalytic efficiency of zinc oxide prepared using natural polysaccharides indicated that: (a) preparation was independent of ratio
    of composition; (b) 450 ℃ was the best calcination temperature of zinc oxide; (c) different additives will generate different effects among different polysaccharides used to prepared zinc oxide ; (d) the best photocatalytic efficiency was obtained for sodium alginate and corn starch with conditions for the photocatalytic circulating water temperature was 30 ℃,when the concentration of pollutants is low, the better photocatalytic effect was obtained. The experimental results showed that photocatalytic activity decrease on exposure time, catalyst’s dosage and
    pH.

    目錄 目次頁次 目錄……………………………………………………………………………............. I 圖目錄…………………………………………………………………………............. V 表目錄…………………………………………………………………………............. VIII 第一章研究緣起與目的……………………………………………………………... 1 1-1 研究緣起………………………………………………………………... 1 1-2 研究動機與目的………………………………………………………... 2 第二章文獻回顧……………………………………………………………………... 4 2-1 光化學(Photochemistry)理論………………………………………… 4 2-2 光觸媒介紹………………………………………………...................... 6 2-2-1 觸媒…………………………………………………………….. 6 2-2-2 光觸媒簡介…………………………………………….............. 7 2-2-3 半導體光觸媒………………………………………………….. 9 2-2-4 常見光觸媒特性………………………………………............. 11 2-3 光催化反應……………………………………….………..................... 14 2-3-1 光催化理論…………………………………………………….. 14 2-3-2 光催化機制…………………………………………………….. 16 2-4 氧化鋅與光催化……………………………………….......................... 18 2-4-1 氧化鋅與二氧化鈦之光催化………………………………….. 18 II 2-4-2 氧化鋅光催化特性…………………………………………….. 21 2-5 操作條件對光催化影響………………………………………………... 22 2-5-1 污染物溶液的酸鹼值………………………………………….. 22 2-5-2 光觸媒劑量…………………………………………………….. 24 2-5-3 初始污染物濃度……………………………………………….. 26 2-5-4 光源照射時間與照射光源波長……………………………….. 26 2-5-5 其他操作條件………………………………………………….. 27 第三章實驗內容、材料、設備與方法…………………………………………….. 29 3-1 實驗內容………………………………………………………………... 29 3-2 實驗材料………………………………………………………………... 31 3-2-1 多醣體氧化鋅製備方法……………………………………….. 31 3-2-2 光催化污染物材料…………………………………………….. 35 3-2-3 其他化學品…………………………………………………….. 36 3-3 實驗設備………………………………………………………………... 37 3-3-1 光催化反應器………………………………………………… 37 3-3-2 其他儀器設備………………………………………………… 39 3-4 實驗方法………………………………………………………………... 41 3-4-1 光催化實驗…………………………………………………….. 41 3-4-2 光催化影響因子……………………………………………….. 42 3-4-3 吸附實驗……………………………………………………….. 43 3-4-4 氧化鋅粉末中總鋅濃度檢測………………………………….. 43 3-5 研究方法………………………………………………………………... 45 3-5-1 污染物鑑定方法……………………………………………….. 45 III 3-5-2 去色降解效率………………………………………………….. 46 第四章結果與討論………………………………………………………………....... 47 4-1 研究標的初步試驗……………………………………………………... 47 4-1-1 甲基藍吸附實驗…………………………….............................. 47 4-1-2 結晶紫吸附實驗…………………………….............................. 50 4-1-3 剛果紅吸附實驗…………………………….............................. 52 4-2 氧化鋅製備差異對光催化的影響……………………………............... 55 4-2-1 不同配比製備氧化鋅對光催化的影響……………………….. 55 4-2-2 不同鍛燒溫度製備氧化鋅對光催化的影響………………….. 59 4-2-3 添加物對多醣體製備氧化鋅之光催化效率影響…………….. 62 4-2-4 不同多醣體製備之氧化鋅對光催化的影響………………….. 65 4-3 催化條件對光催化的影響…………………... ……………………….. 70 4-3-1 循環水溫對光催化的影響…………………………………….. 70 4-3-2 不同初始濃度對光催化的影響……………………………….. 71 4-3-3 不同劑量對光催化的影響…………………………………….. 73 4-3-4 照射時間對光催化的影響…………………………………….. 75 4-3-5 酸鹼值對光催化的影響……………………………………….. 81 4-3-5-1 不同觸媒於相同酸鹼值的比較…………………….. 81 4-3-5-2 相同觸媒於不同酸鹼值的比較…………………….. 89 4-3-6 光催化過程pH監測…………………………………………… 96 4-4 氧化鋅物化特性分析…………………………………………………...99 4-4-1 BET、XRD 分析………………………………………………. 99 4-4-2 總鋅濃度測定………………………………………………….. 101 IV 4-4-3 界達電位測定………………………………………………….. 103 第五章結論……….………………………………………………………………...... 105 5-1 結論……………………………………………………………………... 105 5-2 建議……………………………………………………………………... 107 參考文獻………………………………………………………………………............. 108

    Akyol A., Yatmaz H.C., Bayramoglu M., ―Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions‖,Applied Catalysis B: Environmental,54, 19-24 ,2004.
    Ammar H., Hinda L., Mohamed K., Elimame E.,Chantal G.,
    Jean-Marie H., ―Photocatalytic degradation pathway of
    methylene blue in water‖, Applied Catalysis B: Environmental ,31, 1.145-157,2000.
    Barltrop J.A., and Coyle J.D., Principles of photochemistry,Chichester, New York, 1978.
    Chen C.C., ―Degradation pathways of ethyl violet by
    photocatalytic reaction with ZnO dispersions‖, Journal of
    Molecular Catalysis A: Chemical, 264, 82–92, 2007.
    ? Colón G., Hidalgo M.C., Navío J.A., ―Influence of Carboxylic
    Acid on the Photocatalytic Reduction of Cr(VI) Using
    Commercial TiO2‖, Langmuir , 17, 7174-7177,2001.
    ? Daneshvar N., Salari D. , Khataee A.R., ―Photocatalytic
    degradation of azo dye acid red 14 in water on ZnO as an
    alternative catalyst to TiO2‖ Journal of Photochemistry and
    Photobiology A: Chemistry, 162, 317–322,2004.
    ? Evgenidou E., Konstantinou I., Fytianos K., Poulios I., Albanis
    T., ―Photocatalytic oxidation of methyl parathion over TiO2 and
    ZnO suspensions‖ ,Catalysis Today, 124 , 156-162,2007.
    ? Frank S. N., Bard A.J., J. Am. Chem. Soc., 99, 303-304,1977.
    ? Frank S.N., Bard A.J., ―Heterogeneous Photocatalytic Oxidation
    109
    of Cyanide and Sulfite in Aqueous Solutions at Semiconductor
    Powders‖, Journal of Physical Chemistry, 81, 1484-1488, 1977.
    Fujishima A., Hashimoto K., Watanabe T., ―TiO2 Photocatalysis
    Fundamentals and Applications‖, BKC Inc., 128, 1999.
    Fujishima A., Honda K., Nature, 238, 37-37, 1972.
    Gaya U.I., Abdullah A.H., Zainal Z., Hussein M.Z.,
    ―Photocatalytic treatment of 4-chlorophenol in aqueous ZnO
    suspensions: Intermediates, influence of dosage and inorganic
    anions‖, Journal of Hazardous Materials, 168, 57-63, 2009.
    Gratzel M., Energy Resources through Photochemistry and
    Catalysis, Acadmic Press Inc., 1983.
    Guibal E., ―Interactions of metal ions with chitosan-based
    sorbents: a review‖,Separation and Purification Technology,
    38 ,43-74,2004.
    Hariharan C., ―Photocatalytic degradation of organic
    contaminants in water by ZnO nanoparticles: Revisited‖, Applied
    Catalysis A: General, 304, 55-61, 2006.
    Horikoshi S., Matsubara A., Takayama S., Sato M., Sakai F.,
    Kajitani M. , Abe M., Serpone N., ―Characterization of
    microwave effects on metal-oxide materials: Zinc oxide and
    titanium dioxide‖, Applied Catalysis B: Environmental ,91,
    362-367,2009.
    Huang C.P., Dong C., Tang Z., ―Advanced chemical oxidation:
    Its present role and potential future in hazardous waste
    treatment‖, Waste manage. , 13, 361-377 , 1993.
    110
    Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber
    E., Russo R., Yang P., Science,292, 1897 -1899,2001.
    Huang M.H., Wu Y., Feick H., Tran N., Weber E., Yang P.,
    Adv.Mater., 13, 113-116.,2001.
    Khodja A.A., Sehili T., Pilichowski J.F., Boule P.,
    ―Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO
    in aqueous suspensions‖, Journal of Photochemistry and
    Photobiology A: Chemistry, 141, 231–239, 2001.
    Kuo W.S., Ho P.H., ―Solar photocatalytic decolorization of
    methylene blue in water‖, Chemosphere, 45, 77-83, 2001.
    Leyva E., Montalvo C., Moctezuma E. , Leyva S., J. Ceramic
    Processing Research,9, 455-462,2008.
    Li S.J., Ma Z.C., Zhang J., Liu J.Z., ― Photocatalytic activity of
    TiO2 and ZnO in the presence of manganese dioxides‖, Catalysis
    Communications, 9, 1482-1486,2008.
    Li Y., Xie W., Hu X.L., Shen G.F., Zhou X., Xiang Y., Zhao X.,
    Fang P.,―Comparison of Dye Photodegradation and its Coupling
    with Light-to-electricity Conversion over TiO2 and ZnO‖
    Langmuir, 26, 591-597,2010.
    Linsebigler L., Yates J. T., Jr., Chem. Rev., 95, 735-758, 1995.
    Lizama C., Freer J., Baeza J., Mansilla H.D., ―Optimized
    photodegradation of Reactive Blue 19 on TiO2 and ZnO
    suspensions‖,Catalysis Today ,76,235–246,2002.
    Massicotte L.P., Baille W.E., Mateescu M.A., ― Carboxylated
    high amylose starch as pharmaceutical excipients Structural
    111
    insights and formulation of pancreatic enzymes‖,International
    Journal of Pharmaceutics, 356, 212-223,2008.
    Moctezuma E., Leyva E., Palestino G., Lasa H., ―Photocatalytic
    degradation of methyl parathion: Reaction pathways and
    intermediate reaction products‖, Journal of Photochemistry and
    Photobiology A: Chemistry, 186 , 71-84,2007.
    Movahedi M., Mahjoub A.R., Janitabar-Darzi S.,
    ―Photodegradation of Congo Red in Aqueous Solution on ZnO
    as an Alternative Catalyst to TiO2‖, Journal of the Iranian
    Chemical Society, 3, 570-577, 2009.
    Palominos R.A., Mondaca M.A., Giraldo A., G. Penuela ,
    Pérez-Moya M., Mansilla H.D., ―Photocatalytic oxidation of the
    antibiotic tetracycline on TiO2 and ZnO suspensions‖, Catalysis
    Today ,144,100-105,2009.
    Peternel I.T., Koprivanac N., Božić A.M.L., Kušić H.M.,
    ―Comparative study of UV/TiO2, UV/ZnO and photo-Fenton
    processes for the organic reactive dye degradation in aqueous
    solution‖, Journal Hazardous Materials, 148, 477-484, 2007.
    Sakthivel S., Neppolian B., Shankar M.V., Arabindoo B.,
    Palanichamy M., Murugesan V., ― Solar photocatalytic
    degradation of azo dye: comparison of photocatalytic efficiency
    of ZnO and TiO2‖, Solar Energy Materials & Solar Cells, 77,
    65-82,2003.
    Sun C.Y., Zhao D., Chen C.C., Ma W.H., Zhao J.C.,
    ―TiO2-Mediated Photocatalytic Debromination of
    112
    Decabromodiphenyl Ether: Kinetics and Intermediates‖,Environ.
    Sci. Technol., 43, 157–162, 2009.
    Thomas J.K., The chemistry of excitation at interfaces, American
    Chemica Society, Washington DC, 1984.
    Tseng J.M., Huang C.P., ―Removal of chlorophenols from water
    by photocatalytic oxidation,‖ Water Science Technology, 23,
    377-387, 1991.
    Wang H.H., Xie C.S., Zhang W., Cai S.Z., Yang Z.H., Gui Y.H.,
    ―Comparison of dye degradation efficiency using ZnO powders
    with various size scales‖, Journal of Hazardous Materials, 141,
    645-652,2007.
    Wayne C.E., Wayne R.P., Photochemistry, Oxford University
    Press, New York, 1996.
    Wissiak K.S., Sket B., Vrtacnik M., ―Heterogeneous
    photocatalytic decomposition of halosubstituted benzyl alcohols
    on semiconductor particles in aqueous media‖, Chemosphere, 41,
    1451-1455, 2000.Yang Y., Li X., Chen J., Chen H., Bao X., ―ZnO nanoparticles
    prepared by thermal decomposition f β-cyclodextrin coated zinc
    acetate‖, Chemical Physics Letters,373 ,22–27,2002.
    Yassıtepe E., Yatmaz H.C., Ö ztürk C., ztürk K.Ö , Duran
    C., ‖Photocatalytic efficiency of ZnO plates in degradation of
    azo dye solutions‖, Journal of Photochemistry and Photobiology
    A:Chemistry, 198, 1–6,2008.
    Wang K.,認識汽車的環保功臣 觸媒轉換器,Autoblog
    113 Chinese 快車報,2009。
    王勝民,新時代的綠色產品—光催化觸媒,化工資訊,2000。
    張俊鴻,國立中央大學環境工程研究所碩士論文,2006。

    QR CODE
    :::