| 研究生: |
陳豊官 Li-Kuan Chen |
|---|---|
| 論文名稱: |
環烯烴交聯結構之聚醚醚酮酮質子交換膜 Cross-Linked Norbornene Sulfonated poly (ether ether ketone ketone) for Proton Exchange Membrane Fuel Cell |
| 指導教授: |
諸柏仁
Po-Jen Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 甲醇穿透 、環烯烴結構 、交聯 、質子交換薄膜 、直接甲醇燃料電池 |
| 外文關鍵詞: | Direct methanol fuel cell, Cross-linking, Methanol cross-over, Norbornene structure, Proton exchange membrane |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由未飽合雙鍵環烯烴結構單體(NB-diOH)及帶有磺酸根的單體(DHNS),並加上帶有氟原子的苯酮結構單體(DFBP)所聚合出帶有磺酸化聚醚醚酮酮的高分子聚合物,並進一步製成質子交換薄膜。當高分子薄膜帶有的磺酸根越多,所帶來的效應如:導電度、吸水量甚至離子交換容積也相對來的較高許多。除此之外,本實驗也藉由環烯烴結構中未飽和雙鍵進行交聯作用,降低在甲醇穿透率及吸水吸甲醇量的表現,對此電解質薄膜顯現出益處。在此研究可針對調控磺酸化程度(DHNS 含量)加上適當的交聯反應(di-vinyl benzene ;DVB 含量)可以呈現出高導電度及低膨潤的電解質薄膜。整個NB-系列的薄膜可以發現出具有好的導電度及低膨潤性的薄膜為NB-sPEEKK-80X,在薄膜厚度為85 μm 時,直接甲醇燃料電池測試中表現出:60℃時,效能為16.5 mW/cm2 及50℃時,效能則為14.5 mW/cm2。
另一方面,也在NB-sPEEKK 高分子中添加入sTNT(sulfonated Titanium dioxide nanotube)表面修飾磺酸根之奈米管狀結構,其具備良好的保水性質,並形成有機/無機複合薄膜,讓sTNT 無機物的混摻在NB-sPEEKK 主鏈上分散性有較佳的均勻度,再藉由無機物上的磺酸根及NB-sPEEKK 主鏈上磺酸根之間的作用力,使得水分子在有機/無機的介面產生更強的鍵結,來幫助質子在親水端的水通
道有更佳的傳遞路徑。初步看出,NB-sPEEKK80/10 sTNT 這塊薄膜有較佳的導電度及最佳分散性。
A novel proton conducting membrane where the poly (ether ether ketone ketone) copolymer containing unsaturated norbornene unit and pendant sulfonic acid were
synthesized by aromatic substitution polymerization reaction using 4,4''-Difluorobenzophenone (DFBP), 6,7-dihydroxy -2-naphthalenesul -fonate (DHNS), and 1,4-dihydro-1,4-methanonaphthalene-5,8-diol (NB-diOH) monomers. The degree of sulfonation can be controlled by adjusting the DHNS and NB-ph-diOH mole ratio in feed stream. The proton conductivity, water uptake and ion exchange capacity (IEC) all increase with increasing the DHNS feed concentration. On the other hand, cross-linking through double bond in norbornene unit reduces both the methanol permeability and methanol solvent uptake. Proton conducting membrane with high proton conductivity and low methanol swelling can be achieved by optimizing the
degree of sulfonation (DS) with the degree of cross-linking. The study shows that these two structure characteristics can be adjusted separately by controlling the DHNS feed concentrations (for optimized DS) and di-vinyl benzene (DVB) for suitable degree of cross-linking. The best membrane with high proton conductivity and low
degree of swelling is NB-sPEEKK-80X. The DMFC single cell assembled using this membrane (85μm thickness) displayed fair density reaching 16.5mW/cm2 at 60℃ and 14.5 mW/cm2 at 50℃.
In addition, we also added the structure sTNT(sulfonated Titanium dioxide nanotube) into NB-sPEEKK polymers that sTNT have a good retention water and sulfonic acid groups on the surface to form a nice uniform in dispersion of
organic/inorganic composite membrane. And the water in the membrane have a interaction by the sulfonic acid group bonding between sTNT and NB-sPEEKK polymer, to help the proton have a good transportation in the water channel of
hydrophilic region. Now initially the NB-sPEEKK80/10 sTNT membrane had a good conductivity and dispersion.
[1] 許閣倫,環烯烴聚醚醚酮與聚醚醚酮酮質子傳導膜之開發,中央大學化學所碩士論文,97 年6 月.
[2] 翁芳柏,經濟工業局技術報導之燃料電池簡介,元智大學機械所,2001年10 月.
[3] http://www.clean-mobile.com/dmfc
[4] 資料來源﹕SRI/PEP 223,Jul 1998、
www.teamzeon.com/docs/COP616_files/frame.htm/化工所 ITIS 計畫整理
[5] S.P. Kusumocahyo, M. Sudoh, Dehydration of acetic acid by pervaporation with charged membranes. J. Membr. Sci 1999, 161, 77-83.
[6] K.Y. Cho, H.Y. Jung, S.S. Shin, N.S. Choi, S.J. Sung, J.K. Park, J.H. Choi, K.W.Park, Y.E. Sung, Proton conducting semi-IPN based on Nafion and crosslinked
poly(AMPS) for direct methanol fuel cell. Electrochim.Acta 2004, 50, 589-593.
[7] M. Matsuguchi , H. Takahashi, Methanol permeability and proton conductivity of a semi-interpenetrating polymer networks (IPNs) membrane
composed of Nafion® and cross-linked DVB. J. Membr. Sci 2006, 281, 707-15.
[8] T. Li, G. Zhong, R. Fu, Y. Yang, Synthesis and characterization of Nafion-cross-linked PVP semi-interpenetrating polymer network membrane for
direct methanol fuel cell. J. Membr. Sci. 2010.
[9] Q. Li, R. He, J. O.Jensen, N. J. Bjerrum, Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C, Chem. Mater.
2003, 15, 4896-4915.
[10] T. K. Goh, A.P. Sulistio, A. Blencowe, J. W. Johnson, G.G.Qiao, Synthesis and characterization of core cross-linked star clusters by conventional free-radical
polymerization. Macromolecules 2007, 40, 7819-7826.
[11] S. Zhong, T. Fu, Z. Dou, C. Zhao, H. Na, Preparation and evaluation of a proton exchange membrane based on crosslinkable sulfonated poly(ether ether ketone)s.
J. Power Sources 2006, 162, 51.
[12] S. Zhong, X. Cui, H. Cai, T. Fu, C. Zhao, H. Na, Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell
applications..J. Power Sources 2007,164 ,65.
[13] S.L. Zhong, X.J. Cui, H.L. Cai, T.Z. Fu, K. Shao, H. Na, Crosslinked SPEEKAMPS blend membranes with high proton conductivity and low methanol diffusion coefficient for DMFC applications J. Power Sources 2007, 168 ,154.
[14] F.C. Ding, S.J. Wang, M. Xiao, Y.Z. Meng, Cross-linked sulfonated poly(phathalazinone ether ketone)s for PEM fuel cell application as proton-exchange
membrane. J. Power Sources 2007, 164, 488.
[15] F.C. Ding, S.J. Wang, M. Xiao, X.H. Li, Y.Z. Meng, Fabrication and properties of cross-linked sulfonated fluorene-containing poly(arylene ether ketone) for proton
exchange membrane. J. Power Sources 2007, 170, 20-27.
[16] M.H. Jeong, K.S. Lee, J.S. Lee, Synthesis and characterization of sulfonated poly(arylene ether ketone) copolymers containing crossling moiety.J. Membr. Sci
2009, 337, 145-152.
[17] S.D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G.P. Robertson,M.D. Guiver, Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK).J. Membr. Sci.2004, 233, 93-99.
[18] S.D. Mikhailenko, G.P. Robertson, M.D. Guiver, S. Kaliaguine, Properties of PEMs based on cross-linked sulfonated poly(ether ether ketone). J. Membr. Sci.
2006 285, 306-316.
[19] B. Smitha, S. Sridhar, A.A. Khan, Proton conducting composite membranes from polysulfone and heteropolyacid for fuel cell applications. J. Polym. Sci.Part B: Polym. Phys.2005, 43, 1538-1547.
[20] D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, Preparation and performance of a Nafion®-montmorillonite nanocomposite membrane for direct methanol fuel cell. J. Power Sources.2003, 118, 205-211.
[21] K.T. Adjemian, S.J. Lee, S. Srinivasan, J. Benziger, A.B. Bocarsly, Silicon oxide Nafion composite membranes for proton-exchange membrane Fuel Cell operation at 80-140°C. Electrochem.Soc. 2002, 149, A256
[22] H. Lin, C. Zhao, W. Ma, K. Shao, H. Li, Y. Zhang, H. Na, Novel hybrid polymer electrolyte membranes prepared by a silane-cross-linking technique for direct methanol fuel cells. Journal of Power Sources 2010, 195, 762–768.
[23] Y.C. Yen, Y.S. Ye, C.C. Cheng, C.H. Lu, L.D. Tsai, J.M. Huang, F.C. Chang, The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane
containing cross-linked proton exchange membrane. Polymer 2010, 51, 84–91.
[24] Y. Zhang, Y. Wan, G. Zhang, K. Shao, C. Zhao, H. Li, H. Na, Preparation and properties of novel cross-linked sulfonated poly(arylene ether ketone) for direct
methanol fuel cell application. J. Membr. Sci 2010, 348, 353-359.
[25] J. Kerres, A. Ullrich, F. Meier, T. Ha¨ring, Synthesis and characterization of novel
acid–base polymer blends for application in membrane fuel cells. Solid StateIonics 1999, 125, 243-249.
[26] C. M. Tang , W. Zhang, J. Kerres, Preparation and characterization of ionically cross-linked proton-conducting membranes. J. New. Mat. Electrochem. Systems
2004, 7, 287-298.
[27] S. Bhadra, N.H. Kim, J. H. Lee, A new self-cross-linked, net-structured, proton conducting polymer membrane for high temperature proton exchange membrane fuel cells. J. Membr. Sci 2010, 349, 304-311.
[28] P.P. Chu, C.S. Wu, P.C. Liu, T.H. Wang, J.P. Pan, Proton exchange membrane bearing entangled structure: Sulfonated poly(ether ether ketone)/bismaleimide
hyperbranch . Polymer 2010, 51, 1386-1394.
[29] http://www.afmuniversity.org/index.cgi?CONTENT_ID=33
[30] 陳碧玉,利用AFM-CITS 的技術來探討聚苯胺與ITO 的導電均勻性,中央大學,化學所碩士論文,92 年6 月.
[31] Y.K. Kim, J.S. Lee, C.H. Rhee, H.K. Kim,H. Chang, Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic–inorganic composite membranes. Journal of Power Sources 2006, 162,
180-185.
[32] N.S. Choi, Y.M. Lee, B.H. Lee, J.A. Lee, J.K. Park, Nanocomposite single ion conductor based on organic–inorganic hybrid. Solid StateIonics 2004, 167, 293-299.
[33] Y. Gao, G.P. Robertson, M.D.Guiver,S.D.Mikhailenko,X. Li, S. Kaliaguine,Synthesis of poly(arylene ether ether ketone ketone) copolymers containing pendant sulfonic acid groups bonded to naphthalene as proton exchange
membrane materials. Macromolecules 2004, 37, 6748-6754.
[34] J.K. Lee, J. Kerres, Synthesis and characterization of sulfonated poly(arylene thioether)s and their blends with polybenzimidazole for proton exchange
membranes, J. Membr. Sci. 2007, 294, 5-83.
[35] D. Xing, J. Kerres, Improvement of synthesis procedure and characterization of sulfonated poly(arylene ether sulfone) for proton exchange membranes, J. New
Mater. Electrochem. Systems 2006, 9, 51-60.