跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳淑惠
SHU-HUI WU
論文名稱: 週期為r之週期點個數的平均值
On the average of number of periodic point with period r
指導教授: 夏良忠
Liang-Chung Hsia
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 95
語文別: 英文
論文頁數: 38
中文關鍵詞: 週期點週期平均值
外文關鍵詞: periodic point, period, function field
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們要計算在一個function field上週期為r的週期點個數的平均值。這個結果和古典結果有一些不同。在第一、二節中,我們先複習整數環和多項式環的一些性質,並加以比較這兩個環的相似性。第三節開始討論固定點的分佈情形,最後利用第三節的結果來估計週期為r的週期點個數的平均值。


    In this paper, we compute the average of the number of periodic points with period r on a function field. The result has a little different with the classical result. In the first two sections, we review some properties of the ring of integer Z and the polynomial ring A. Then we will compare the ring of integer Z and the polynomial ring A. In section 3, we discuss the distribution of fixed points. Using the result in section 3 to estimate the range of the average of periodic point with period r.

    1 Introduction 1 2 The ring of integers Z 2 3 The polynomial ring over finite fields 6 4 Distribution of fixed points 24 5 Distribution of periodic points 33 Reference 38

    [1] Serge Lang, Algebra, 3rd ed. Springer-Verlag.
    [2] Ireland Kenneth F. and Michael Rosen.,A Classical Introduction to Modern Number Theory, 2nd edition, New York Springer-Verlag, 1982.
    [3] Michael Rosen, Number Theory in Function Fields, GTM210, New York Springer-Verlag, 2002.
    [4] Andrei Khrennikov and Marcus Nilsson, On the Number of Cycles of p-adic Dynamical Systems, Journal of Number Theory, no.2, Page.255-264, 2001.

    QR CODE
    :::