跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林哲巨
Che-Chu Lin
論文名稱: 利用光導管提升縱向位移靈敏度之研究
Improving the longitudinal shifting selectivity by introducing a light pipe
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 中文
論文頁數: 84
中文關鍵詞: 全像縱向位移靈敏度研究
外文關鍵詞: longitudinal selectivity, light pipe, holography
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要目的在於研究體積全像位移多工之位移靈敏度,吾人提出一新穎的90度紀錄架構,以訊號光為平面波,參考光為球面波,在參考光光路上置入導光管(Light pipe),進行一系列實驗,並藉由相位疊加法(Volume hologram being an integrator of the lights emitted from elementary light source,簡稱VOHIL)理論的分析,與實驗結果做驗證。於此一研究中吾人發現,光折變晶體在接收同樣數值孔徑(Numerical aperture)的參考光下,可提高體積全像之縱向位移靈敏度。
    此外,於實驗過程中,我們遇到電動平移台位移不精確、齒輪間隙所產生的實驗誤差,以及實驗歸一化的問題,因此我們亦同時針對這些問題設計一套實驗步驟與分析方法,以得到精確的測量數據。
    相信此一研究對於探討光學儲存的儲存容量,以及利用全像晶體進行共焦顯微鏡解析度之提昇等研究,必能有所助益。


    In this thesis, we study the longitudinal selectivity of volume holographic optical elements. We propose a 90-degree geometry with inserting a light pipe in the reference arm. According to the analysis by VOHIL model and experimental demonstration, we find that the light pipe is useful to enhance longitudinal selectivity of the volume holographic optical element. The enhancement of the longitudinal selectivity can be applied to enhance multiplexing capacity of volume holographic storage and to increase resolution of confocal microscope
    based on volume holographic filter.

    In this thesis, we study the longitudinal selectivity of volume holographic optical elements. We propose a 90-degree geometry with inserting a light pipe in the reference arm. According to the analysis by VOHIL model and experimental demonstration, we find that the light pipe is useful to enhance longitudinal selectivity of the volume holographic optical element. The enhancement of the longitudinal selectivity can be applied to enhance multiplexing capacity of volume holographic storage and to increase resolution of confocal microscope based on volume holographic filter. 目錄 致謝 i 摘要 iv Abstract v 目錄 vi 圖目錄 vii 表目錄 ix 第一章 導論 1 1-1 本文緣起 1 1-2 論文大綱 2 第二章 體積全像與光折變效應 4 2-1 體積全像 4 2-2耦合理論 8 2-3 布拉格條件 13 2-3-1布拉格匹配 15 2-3-2 布拉格不匹配 16 2-4 光折變效應 19 第三章 以球面波為參考光之位移多工 27 3-1 相位疊加法 27 3-2 模擬結果 30 3-3 解析解 30 3-4 實驗 32 3-4-1實驗架構 33 3-4-2實驗步驟及技巧 36 3-5實驗結果 48 第四章 以球面波通過導光管為參考光之實驗 51 4-1 導光管介紹 51 4-2 實驗架構 52 4-3實驗結果 55 4-4導光管之模擬結果 57 第五章 結論 61 附錄A 弧形導光管 62 參考文獻 64 中英文名詞對照表 67

    [1] D. Gabor, "A new Microscopic principle," Nature 161, 777 (1948).
    [2] R. J. Collier, C. B. Bruckhardt, and L. H. Lin, Optical holography, Academic press, New York (1971).
    [3] F. S. Chen, J. T. LaMacchia and D. B. Fraser, "Holographic storage in lithium niobate," Appl. Phys. Lett. 13, 223 (1968).
    [4] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, New York, 2000).
    [5] B. Fischer, M. Cronin-Golomb, J. O. White, and A. Yariv, "Amplified reflection, transmission, and self-os cillation in real-time holography," Opt. Lett. 6, 519- (1981)
    [6] H. A. Eggert, F. Kalkum, K. Buse, and B. Sturman, "Bragg selectivity of space-charge gratings in multidomain lithium niobate crystals," Opt. Lett. 31, 1256-1258 (2006)
    [7] P. Boffi, D. Piccinin, M. C. Ubaldi, and M. Martinelli, "All-Optical Pattern Recognition for Digital Real-Time Information Processing," Appl. Opt. 42, 4670-4680 (2003)
    [8] F. Dubois, F. De Schryver, and B. Biran, "Theoretical study of size effects in volume holograms," J. Opt. Soc. Am. A 8, 270- (1991)
    [9] W. C. Su and C. C. Sun, "Optical pattern interconnections using random phase encoding in volume holograms," Opt. Commun. 213, 259-265(2002).
    [10] G. Barbastathis, M. Balberg, and D. J. Brady, "Confocal microscopy with a volume holographic filter," Opt. Lett. 24 811-813(1999)
    [11] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, "Diffraction selectivity of holograms with random phase encording," Opt. Commun. 175, 64-74 (2000).
    [12] C. C. Sun, "Simplified model for diffraction analysis of volume holograms," Opt. Eng. 42, 1184-1185 (2003).
    [13] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, "Holographic data storage in three-dimensional media," Appl. Opt., 5, 1303-1311, 1966
    [14] C. -C. Sun and W. -C. Su, "Three-Dimensional Shifting Selectivity of Random Phase Encoding in Volume Holograms ," Appl. Opt. 40, 1253-1260 (2001)
    [15] S. Yin, P. Purwosumarto, and F. T. S. Yu, "Application of fiber specklegram sensor to fine angular alignment," Opt. Commun. 170, 15–21 (1999).
    [16] G. A. Rakuljic, V. Levya, and Yariv, "Optical data storage by using orthogonal wavelength-multiplexed volume holograms," Opt. Lett. 17, 1471-1473 (1992).
    [17] S. F. Chen, C. S. Wu, and C. C. Sun, "Design for a High Dense Wavelength Division Multiplexer Based on Volume Holographic Gratings," Opt. Eng. 43, 2028-2033 (2004).
    [18] F. Havermeyer, W. Liu, C. Moser, D. Psaltis and G. J. Steckman, "Volume holographic grating-based continuously tunable optical filter," Opt. Eng. 43, 2017-2021 (2004).
    [19] A. Sinha, G. Barbastathis, W. Liu, and D. Psaltis, "Imaging using volume holograms," Opt. Eng. 43, 1957 (2004).
    [20] W. Liu, G. Barbastathis, and D. Psaltis, "Volume holographic hyperspectral imaging," Appl. Opt. 43, 3581 (2004).
    [21] C. C. Sun, T. C. Teng and Y. W. Yu, "One-dimensional Optical Imaging with Volume Holographic Optical Element," Opt. Lett. 30, 1132-1134 (2005).
    [22] C. C. Sun, Y. M. Chen, and W. C. Su, "An all-optical fiber sensing system based on random phase encoding and volume holographic interconnection," Opt. Eng. 40, 160-161 (2001).
    [23] C. C. Sun, Y. Ouyang, W. C. Su, and E. T. Chiou, "All-optical angular sensing based on holography multiplexing with spherical waves," Opt. Eng. 41, 2809-2813 (2002).
    [24] B. Wang, J. Y. Chang, W. C. Su, and C. C. Sun, "Optical security using a random binary phase code in volume holograms," Opt. Eng. 43, 2048-2052 (2004).
    [25] T. C. Teng, P. C. Ou, and C. C. Sun, "Volume holographic Optical Elements for Point-to-point Self-focusing with Local Crosstalk," Opt. Lett. 30, 3015-3017 (2005).
    [26] C. C. Sun, C. Y. Hsu, W. C. Su, Y. Ouyang, and J. Y. Chang, "A novel algorithm for high sensitivity in measuring surface variation based on volume holography," Micro. Opt. Tech. Lett. 34, 319-321(2002).
    [27] Y. Jeong and B. Lee, "Effect of a random pattern through a multimode-fiber bundle on angular and spatial selectivity in volume holograms: experiments and theory," Appl. Opt. 41, 4085-4091 (2002).
    [28] S. H. Shin and B. Javidi, "Three-dimensional object recognition by use of a photorefractive processor," Opt. Lett. 26, 1161-1163 (2001).
    [29] B. Javidi and E. Tajahuerce, "Three-dimensinal object recognition by use of digital holography," Opt. Eng. 25, 610-612 (2000).
    [30] C. C. Sun, C. Y. Hsu, C. H. Wu, and W. C. Su, "Spatial filtering of three-dimensional objects based on volume holography," Opt. Eng. 42, 2788-2789 (2003).
    [31] W. R. Klein, "Theoretical Efficiency of Bragg Devices," Proc. IEEE 803-804 (1966).
    [32] F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
    [33] L. Young, W. K. Y. Wing, M. L. W. Thewait and W. D. Crnish, "Theory of formation of phase holograms in lithium niobate," Appl. Phys. Lett. 24, 264 (1974).
    [34] G. A. Alphonse, R. C. Alig, O. L. Staebler and W. Phillips, "Time dependent characteristics of photo-induced space charge field and phase holograms in lithium neonate and other photorefractive materials," RCA Review 36, 213 (1975).
    [35] D. Vonder Linde and A. M. Glass, "Photorefractive effects for reversible holographic storage of information," J. Appl. Phys. 8, 85 (1975).
    [36] D. M. Kim, R. R. Shah, T. A. Rabson and F. K. Tittel, "Nonlinear dynamic theory for photorefractive phase hologram formation," Appl. Phys. Lett. 28, 338 (1976).
    [37] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, "Holographic storage in electro-optic crtstals. I. Steady state," Ferroelectrics 22, 949 (1979).
    [38] A. Yariv, and P. Yeh, Optical Waves in Crystal, (John Wiley &Sons, New York, 1984).
    [39] R. L. Townsend and J. T. LaMachia, "Optical induced refractive index change in BaTiO3," J. Appl. Phys. 4, 5188 (1970).
    [40] 林祐年, 體積光柵應用於微物3D掃描之研究 , 國立中央大學光電所碩士論文,中華民國八十九年。
    [41] 葉世博, 高位移敏感度之全像多工光學儲存之研究 , 國立中央大學光電所碩士論文,中華民國八十九年。

    QR CODE
    :::