跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐佳琇
Jia-Shiow Shyu
論文名稱: 最小偏誤設計之建構研究
Research on construction of minimum aberration design
指導教授: 王丕承
PC Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 94
語文別: 中文
論文頁數: 57
中文關鍵詞: 定義關係最小偏誤設計字元長度型解析度
外文關鍵詞: word length pattern, defining relation, minimum aberration design, resolution
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗設計主要的目的是希望透過實驗的方式,檢測出主要影響產品特性值或反應值的因子與交互作用。由於資源有限,因此希望能夠藉由少數的處理組合,取得最多的資訊來處理問題。若實驗者將因子任意指派至直交表上,那麼在資料分析的過程中,可能會發生效應互相混淆的情形,因此主要的課題便是該如何選擇最佳的設計來安排實驗。通常會使用最小偏誤設計的準則來判斷設
    計的優劣,其目的在於減少效應混淆的情形。故將因子安排至最小偏誤設計中,可讓實驗者更容易了解各種效應對於反應值所產生的影響。
    而Chen, Sun & Wu (1993)就以最小偏誤設計的準則為主,在不同的因子個數與處理組合個數之下,提供了一系列最小偏誤設計的目錄,以供實驗者在指派因子時作為參考使用。而本研究主要目的是希望不需透過查詢目錄的方式,可以快速且直接建構出最小偏誤設計來使用。因此選取直交表中某部份的行作為主要的基本架構,利用刪減因子建構行或者增加其餘因子建構行的方式來建構出各種最小偏誤設計。只要了解兩種方法的原則,便可簡單的建構出最小偏誤設計。


    The purpose of Design of Experiments is to find out factors and interactions that affect response by experiment. If experimenters arrange factors arbitrarily on the orthogonal array, it may be occur that the effects are aliased. So a key question is how to choose a fraction of the orthogonal array to arrange factors. The
    experimenters always use the minimum aberration design that can be estimate the most main effects. According to the minimum aberration criterion, Chen, Sun & Wu (1993) propose an algorithm for constructing complete catalogue of fractional factorial designs. The issue of this studying is to construct minimum aberration design easily and directly without referring CSW's catalogue. Therefore, we choose fraction of
    the orthogonal array to be basic construction, and propose two methods to construct the minimum aberration design.

    第一章 緒論....................................................... 1 第二章 文獻探討....................................................4 第三章 刪減因子建構行取得的設計................................... 15 3.1 建構最小偏誤設計之標準組合.................................... 18 3.2 刪減因子建構行組合之特性.......................................22 3.3 未出現在CSW的較佳偏誤設計......................................26 第四章 增加因子建構行取得的設計................................... 32 4.1 建構最小偏誤設計之標準組合.................................... 34 4.2 增加因子建構行組合之特性...................................... 39 第五章 結論....................................................... 42 參考文獻.......................................................... 43 附錄.............................................................. 45

    參考文獻
    [1] Box, G. E. P. and Hunter, J. S. (1961), “The 2n-p Fractional Factorial Designs Part I.” Technometrics, 3, 311−352.
    [2] Chen, J., Sun, D. X. and Wu, C. F. J. (1993), “A Catalogue of Two-Level and Three-Level Fractional Factorial Designs With Small Runs.” International Statistical Review, 61, 131−145.
    [3] Deng L. and Tang B. (1999), “Generalized Resolution and Minimum Aberration Criteria for Plackett-Burman and Other Nonregular Factorial Designs.” Statist. Sinica, 9, 1071-1082.
    [4] Fries, A. & Hunter, W. G. (1980), “Minimum Aberration 2k-p designs.” Technometrics, 22, 601−608.
    [5] Ke W., Tang B. and Wu H. (2005), “Compromise Plans with Two-Factor Interactions.” Statist. Sinica, 15, 1071-1082.
    [6] Li, H. and Lin, D.K.J. (2003), “Optimal Foldover Plans for Fractional Factorial Designs.” Technometrics, 45, 142−149.
    [7] Li, H. and Mee, R. W. (2002), “Better Foldover Fractions for Resolution Ⅲ 2k-p Designs.” Technometrics, 44, 278−283.
    [8] Montgomery, D. C. (2001), Design and Analysis of Experiments (5vh ed.), New York: Willey.
    [9] Wu.C.F.J. and Wu H. (2002), “Clear Two-Interactions and Minimum Aberration.” Ann. Statist. 30, 1512-1523.
    [10] Wu, C. F. J and Zhang R. (1993), “Minimum Aberration Designs with Two-Level and Four-Level Factors.” Biometrika, 80, 203-209.

    QR CODE
    :::